АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Параметрические датчики

Читайте также:
  1. Генераторные датчики
  2. Датчики линейных ускорений (ДЛУ)
  3. Датчики медико-биологической информации
  4. Датчики напряжения
  5. Датчики угловых скоростей ДУС
  6. Датчики электрических параметров.
  7. Емкостные датчики перемещения.
  8. Занятие 1. Параметрические методы оценки достоверности результатов статистического исследования
  9. Непараметрические критерии
  10. Непараметрические критерии проверки гипотез
  11. ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Примерами могут служить емкостные, индуктивные, резистивные датчики.

Емкостной датчик

В качестве примера может быть использован, например, плоский конденсатор. Емкость C плоского конденсатора определяется соотношением

где S - площадь обкладки конденсатора, d - расстояние между обкладками, e - диэлектрическая проницаемость вещества между обкладками.

Если сместить относительно друг друга обкладки заряженного конденсатора, то изменится его электроемкость и, соответственно, изменится разность потенциалов между его обкладками. С помощью таких датчиков можно измерять механические перемещения, толщину и однородность диэлектрика и т.п.

Индуктивный датчик

 
Рис. 4

В простейшем варианте представлен на рис.4. Катушка 1 намотана на замкнутый сердечник 2. Якорь 3 может перемещаться относительно сердечника и замыкать последний. При перемещении якоря изменяется индуктивность катушки, это приводит к изменению индуктивного сопротивления цепи и, в конечном итоге, к изменению тока в цепи катушки. Входной величиной такого датчика является механическое перемещение якоря, выходной - ток в цепи катушки.

Разновидностью индуктивных датчиков являются магнитоупругие датчики. Их работа основана на изменении магнитной проницаемости сердечника катушки, если сердечник деформировать - сжать, растянуть и т.п. Изменение магнитной проницаемости сердечника приводит к изменению индуктивности катушки. Входной величиной такого датчика является механическая деформация, механическое напряжение, выходной - сила тока в цепи катушки.

Резистивные датчики

В качестве таковых рассмотрим тензорезисторы (тензосопротивления). Тензорезисторы иначе называют тензодатчиками.

Принцип действия тензодатчиков основан на тензоэффекте. Тензоэффект проявляется в том, что активное сопротивление проводника зависит от механической деформации: сжатия, растяжения, изгиба, кручения.

Различают тензодатчики с линейным и объемным тензоэффектом.

Датчики с линейным тензоэффектом изготовляют из тонкой проволоки (см. практическую часть). Сопротивление проволоки рассчитывают по формуле

где r - удельное сопротивление проволоки, l - ее длина, S - площадь поперечного сечения. При деформации датчика одновременно изменяются длина l и поперечное сечение S, что приводит к изменению сопротивления и силы тока в цепи датчика. Датчики с линейным тензоэффектом используют для измерения механических перемещений, деформаций, механических напряжений и давления.

Датчики с объемным тензоэффектом представляют собой столбики из вещества, сопротивление которого сильно изменяется в зависимости от давления окружающей среды. Применяют такие датчики в качестве манометров для измерения высоких и сверхвысоких давлений.

В завершение этого раздела необходимо несколько слов сказать об электронныхдатчиках, которые в настоящее время получили широкое распространение. В них преобразование неэлектрической величины в электрическую основано на электронных процессах.

К электронным датчикам относятся вакуумные фотоэлементы, в основе работы которых лежит внешний фотоэффект и полупроводниковые фотоэлементы, работающие на внутреннем фотоэффекте. Фотоэлектронные датчики используют для измерения светового потока, силы света, освещенности, для исследования прозрачности и мутности растворов в колориметрах и нефелометрах. С помощью фотоэлементов можно вести счет предметов, измерять механические перемещения, скорости, ускорения и т.д.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)