АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Разрешающая способность микроскопа

Читайте также:
  1. Абстрактное мышление – высокая способность к обучаемости.
  2. Власть – реальная способность действовать или возможность влиять на ситуацию. Можно иметь власть, не имея полномочий.
  3. Возможности улучшить охрану труда, конкурентоспособность, доходы и перспективы молодежи за счет использования лучшего мирового опыта ее профориентации, обучения и поддержки
  4. Вопрос 38. Профессиональная реабилитация лиц с ограниченной трудоспособностью
  5. Вопрос 39. Профессиональная ориентация и профессиональное образование лиц с ограниченной трудоспособностью
  6. Временная нетрудоспособность в связи с беременностью и родами
  7. Временная нетрудоспособность в связи с карантином
  8. Геометрическая оптика. Разрешающая сила оптических систем
  9. ГЛАВА 4.2. НОВЫЕ ПОДХОДЫ К УПРАВЛЕНИЮ НИС: КОНКУРЕНТОСПОСОБНОСТЬ НАЦИОНАЛЬНЫХ ИННОВАЦИОННЫХ СИСТЕМ МАЛЫХ СТРАН
  10. Гражданская процессуальная правоспособность и дееспособность
  11. Дееспособность граждан
  12. Дееспособность – способность лица своими действиями приобретать и осуществлять гражданские права и обязанности.

Технически возможно создать оптические микроскопы, объективы и окуляры которых дадут общее увеличение 1500-2000 и больше. Однако это нецелесообразно, так как возможность различить мелкие детали предмета ограничивается дифракционными явлениями. Вследствие этого изображение мельчайших деталей предмета теряет резкость, может возникнуть нарушение геометрического подобия изображения и предмета, соседние точки будут сливаться в одну, возможно полное исчезновение изображения. Поэтому в оптике существуют следующие понятия, которые характеризуют качество микроскопа:

Разрешающая способность микроскопа - свойство микроскопа давать раздельно изображение мелких деталей рассматриваемого предмета.

Предел разрешения - это наименьшее расстояние между двумя точками, которые видны в микроскопе раздельно.

Чем меньше предел разрешения, тем выше разрешающая способность микроскопа!

Предел разрешения обусловливает наименьший размер деталей, которые могут различаться в препарате с помощью микроскопа.

Теорию разрешающей способности микроскопа разработал директор завода К.Цейса в Йене профессор-оптик Э.Аббе (1840-1905). В качестве простейшего микропрепарата он взял дифракционную решетку (рис. 2), изучил механизм формирования изображения в микроскопе и показал следующее.

1. Пучок вторичных световых волн после дифракции на объекте DD попадает в объектив и создает в результате интерференции в его фокальной плоскости FF дифракционную картину - систему главных максимумов и минимумов.

Рис. 2

2. Далее в формировании изображения участвуют только лучи, образующие главные максимумы. Они пересекаются в соответствующей плоскости и дают изображение объекта D D .

Введем понятие апертурного угла - это угол между крайними лучами конического светового пучка, идущего от середины объекта в объектив (рис. 3, а). Для создания изображения, то есть для разрешения объекта, достаточно, чтобы в объектив попали лучи, образующие максимумы только нулевого и первого порядка хотя бы с одной стороны (рис. 2 и 3, б). Участие в образовании изображения лучей от большего количества максимумов повышает качество изображения, его контраст. Поэтому лучи, образующие эти максимумы, должны быть в пределах апертурного угла объектива.

 

а) б) в) г)

1- фронтальная линза объектива, 2 - объектив

Рис.3

 

 

Таким образом, если объектом является дифракционная решетка с периодом d и свет падает на нее нормально (рис.2 и 3, б), то в формировании изображения обязательно должны участвовать лучи, образующие максимумы нулевого и первого порядков с обеих сторон, а угол j1 - угол отклонения лучей, образующих максимум первого порядка, соответственно должен быть, в крайнем случае, равен углу U /2.

Если же взять решетку с меньшим периодом d ’, то угол j’1 будет больше угла U /2 и изображение не возникнет. Значит период решетки d можно принять за предел разрешения микроскопа Z. Тогда, используя формулу дифракционной решетки, запишем для k =1:

.

Заменяя d на Z, а j1 на U /2, получим

. (6)

Во время микроскопии световые лучи падают на объект под разными углами. При наклонном падении лучей (рис.3, г) предел разрешения уменьшается, так как в формировании изображения будут участвовать только лучи, образующие максимумы нулевого порядка и первого порядка с одной стороны, а угол j1 будет равен апертурному углу U. Расчеты показывают, что формула для предела разрешения в этом случае принимает следующий вид:

. (7)

Если пространство между объектом и объективом заполнить иммерсионной средой с показателем преломления n, который больше показателя преломления воздуха, то длина волны света l n = l ¤ n. Подставляя это выражение в формулу для предела разрешения (7), получим

, или . (8)

Таким образом, формула (7) определяет предел разрешения для микроскопа с сухим объективом, а формула (8) -для микроскопа с иммерсионным объективом. Величины sin 0,5 U и sin0,5 U в этих формулах называют числовой апертурой объектива и обозначают буквой А. Учитывая это, формулу предела разрешения микроскопа в общем виде записывают так:

. (9)

 

Как видно из формул (8) и (9), разрешающая способность микроскопа зависит от длины волны света, величины апертурного угла, показателя преломления среды между объективом и объектом, угла падения световых лучей на объект, но она не зависит от параметров окуляра. Окуляр никакой дополнительной информации о структуре объекта не дает, качества изображения не повышает, он лишь увеличивает промежуточное изображение.

 

Разрешающая способность микроскопа может быть повышена за счет использования иммерсии и уменьшения длины волны света. Повышение разрешающей способности при использовании иммерсии можно пояснить следующим образом. Если между объективом и объектом находится воздух (сухой объектив), то световой луч при переходе из покровного стекла в воздух, среду с меньшим показателем преломления, значительно изменяет свое направление в результате преломления, поэтому меньше лучей попадает в объектив. При использовании иммерсионной среды, показатель преломления которой приблизительно равен показателю преломления стекла, изменение хода лучей в среде не наблюдается и большее количество лучей попадает в объектив.

В качестве иммерсионной жидкости берут воду (n =1,33), кедровое масло (n =1,515) и др. Если максимальный апертурный угол у современных объективов достигает 1400, то для сухого объектива А =0,94, а для объектива с масляной иммерсией А =1,43. Если при расчете использовать длину волны света l = 555 нм, к которой наиболее чувствителен глаз, то предел разрешения сухого объектива составит 0,30 мкм, а с масляной иммерсией - 0,19 мкм. Значение числовой апертуры указывается на оправе объектива: 0,20; 0,40; 0,65 и др.

Повышение разрешающей способности оптического микроскопа за счет уменьшения длины волны света достигается при использовании ультрафиолетового излучения. Для этого имеются специальные ультрафиолетовые микроскопы с кварцевой оптикой и приспособлениями для наблюдения и фотографирования объектов. Так как в этих микроскопах используется свет с длиной волны примерно в два раза меньше, чем у видимого света, то они способны разрешать структуры препарата размерами около 0,1мкм. Ультрафиолетовая микроскопия имеет еще одно преимущество - с ее помощью можно исследовать неокрашенные препараты. Большинство биологических объектов прозрачны в видимом свете, так как не поглощают его. Однако они обладают избирательным поглощением в ультрафиолетовой области и, следовательно, легко различимы в ультрафиолетовых лучах.

Наибольшая разрешающая способность у электронного микроскопа, так как длина волны при движении электрона в 1000 раз меньше длины световой волны.

 

Полезное увеличение микроскопа ограничено его разрешающей способностью и разрешающей способностью глаза.

Разрешающая способность глаза характеризуется наименьшим углом зрения, при котором человеческий глаз еще различает раздельно две точки предмета. Она лимитируется дифракцией на зрачке и расстоянием между светочувствительными клетками сетчатки. Для нормального глаза наименьший угол зрения равен 1 минуте. Если предмет находится на расстоянии наилучшего зрения - 25 см, то этот угол соответствует предмету размером 70 мкм. Данную величину считают пределом разрешения невооруженного глаза Zr на расстоянии наилучшего зрения. Однако показано, что оптимальная величина Zr равна 140-280 мкм. При этом глаз испытывает наименьшее напряжение.

Полезным увеличением микроскопа называют его максимальное увеличение, при котором глаз еще в состоянии различать детали, равные по величине пределу разрешения микроскопа.

Линейное увеличение микроскопа равно отношению величины изображения предмета, расположенного на расстоянии наилучшего зрения, к величине самого предмета (см. формулу 1). Если за размер предмета примем предел разрешения микроскопа Z, а за размер изображения - предел разрешения невооруженного глаза на расстоянии наилучшего зрения Zr, то получим формулу полезного увеличения микроскопа:

. (10)

Подставляя в эту формулу Z из выражения (9), получим

. (11)

Подставив в формулу (11) длину волны света 555 нм (555×10-9 м), оптимальные величины пределов разрешения глаза 140-280 мкм (140-280×10-6 м), найдем интервал значений полезного увеличения микроскопа

500 А < К п < 1000 А.

Например, при использовании лучших иммерсионных объективов с числовой апертурой 1,43 полезное увеличение будет составлять 700-1400, отсюда видно, что конструировать оптические микроскопы с большим увеличением нецелесообразно. Однако в настоящее время этот вопрос потерял свою остроту в связи с широким использованием в биологии и медицине электронного микроскопа, обеспечивающего увеличение до 600 000, а предел разрешения - до 0,1 нм.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)