АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теоретические модели в структуре теории

Читайте также:
  1. Can-Am-2015: новые модели квадроциклов Outlander L и возвращение Outlander 800R Xmr
  2. I. МЕХАНИКА И ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
  3. XII. ЭЛЕМЕНТЫ ТЕОРИИ АЛГОРИТМОВ
  4. YIII.5.2.Аналогия и моделирование
  5. А. Теоретические взгляды Я.А. Пономарева
  6. Авторегрессионные модели временных рядов
  7. Активность личности, психоаналитические теории личности
  8. Алгоритмизация модели и её машинная реализация
  9. Анализ деятельности Финской спортивной федерации по модели процесса эффективности функционирования
  10. Анализ изменений в составе и структуре активов баланса предприятия
  11. Анализ эффективности использования ОС: факторные модели фондорентабельности и фондоотдачи
  12. Аналитические модели

Своеобразной клеточкой организации теоретических знаний на каждом из его подуровней является двухслойная конструкция – теоретическая модель и формулируемый относительно неё теоретический закон.

Рассмотрим вначале, как устроены теоретические модели.

В качестве их элементов выступают абстрактные объекты (теоретические конструкты), которые находятся в строго определённых связях и отношениях друг с другом.

Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели. Они могут быть применены для описания реальных ситуаций опыта лишь в том случае, если модель обоснована в качестве выражения существенных связей действительности, проявляющихся в таких ситуациях.

Например, если изучаются механические колебания тел (маятник, тело на пружине и т. д.), то чтобы выявить закон их движения, вводят представление о материальной точке, которая периодически отклоняется от положения равновесия и вновь возвращается в это положение. Само это представление имеет смысл только тогда, когда зафиксирована система отсчёта. А это – второй теоретический конструкт, фигурирующий в теории колебаний. Он соответствует идеализированному представлению физической лаборатории, снабжённой часами и линейками. Наконец, для выявления закона колебаний необходим ещё один абстрактный объект – квазиупругая сила, которая вводится по признаку: приводить в движение материальную точку, возвращая её к положению равновесия.

Система перечисленных абстрактных объектов (материальная точка, система отсчета, квазиупругая сила) образуют модель малых колебаний (называемую в физике осциллятором). Исследуя свойства этой модели и выражая отношения образующих ее объектов на языке математики, получают формулу ma + kx = 0, которая является законом малых колебаний.

Этот закон непосредственно относится к теоретической модели, описывая связи и отношения образующих её абстрактных объектов. Но поскольку модель может быть обоснована как выражение сущности реальных процессов колебания тел, постольку полученный закон можно применить ко всем подобным ситуациям.

В развитых в теоретическом отношении дисциплинах, применяющих количественные методы исследования (таких, как физика), законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками – в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями. Богатство связей и отношений, заложенное в теоретической модели, может быть выявлено посредством движения в математическом аппарате теории. Решая уравнения и анализируя полученные результаты, исследователь как бы развёртывает содержание теоретической модели и таким способом получает все новые и новые знания об исследуемой реальности.



Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в её состав. Их следует отличать от аналоговых моделей, которые служат средством построения теории, её своеобразными строительными лесами, но целиком не включаются в созданную теорию. Например, аналоговые гидродинамические модели трубок с несжимаемой жидкостью, вихрей в упругой среде и т. д., применявшиеся при построении Максвеллом теории электромагнитного поля, были «строительными лесами», но модели, характеризующие процессы электромагнетизма как взаимосвязи электрических и магнитных полей в точке, зарядов и электрических токов в точке, – были составной частью теории Максвелла. Чтобы подчеркнуть особый статус теоретических моделей, относительно которых формулируются законы и которые обязательно входят в состав теории, назовём их теоретическими схемами. Они действительно являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи.

Соответственно двум выделенным подуровням теоретического знания можно говорить о теоретических схемах в составе фундаментальной теории и в составе частных теорий.

В основании развитой теории можно выделить фундаментальную теоретическую схему, которая построена из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга, и относительно которой формулируются фундаментальные теоретические законы.

‡агрузка...

Например, в ньютоновской механике её основные законы формулируются относительно системы абстрактных объектов: «материальная точка», «сила», «инерциальная пространственно-временная система отсчёта». Связи и отношения перечисленных объектов образуют теоретическую модель механического движения, изображающую механические процессы как перемещение материальной точки по континууму точек пространства инерциальной системы отсчёта с течением времени и как изменение состояния движения материальной точки под действием силы.

Аналогичным образом в классической электродинамике сущность электромагнитных процессов представлена посредством теоретической модели, которая образована отношениями конструктов «электрическое поле в точке», «магнитное поле в точке» и «ток в точке». Выражением этих отношений являются фундаментальные законы теории электромагнитного поля.

Кроме фундаментальной теоретической схемы и фундаментальных законов в состав развитой теории входят частные теоретические схемы и законы.

В механике это – теоретические схемы и законы колебания, вращения тел, соударения упругих тел, движение тела в поле центральных сил и т. п.

В классической электродинамике к слою частных моделей и законов, включённых в состав теории, принадлежат теоретические схемы электростатики и магнитостатики, кулоновского взаимодействия зарядов, магнитного действия тока, электромагнитной индукции, постоянного тока и т. д.

Когда эти частные теоретические схемы включены в состав теории, они подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Образующие их абстрактные объекты специфичны. Они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы и выступать как их своеобразная модификация. Различию между фундаментальной и частными теоретическими схемами в составе развитой теории соответствует различие между её фундаментальными законами и их следствиями.

Как уже отмечалось, частные теоретические схемы и связанные с ними уравнения могут предшествовать развитой теории. Более того, когда возникают фундаментальные теории, рядом с ними могут существовать частные теоретические схемы, описывающие эту же область взаимодействия, но с позиций альтернативных представлений. Так, например, обстояло дело с фарадеевскими моделями электромагнитной и электростатической индукции. Они возникли в период, когда создавался первый вариант развитой теории электричества и магнетизма – электродинамика Ампера. Это была достаточно развитая математизированная теория, которая описывала и объясняла явления электричества и магнетизма с позиций принципа дальнодействия. Что же касается теоретических схем, предложенных Фарадеем, то они базировались на альтернативной идее – близкодействия.

Не лишне подчеркнуть, что законы электростатической и электромагнитной индукции были сформулированы Фарадеем в качественном виде, без применения математики. Их математическая формулировка была найдена позднее, когда была создана теория электромагнитного поля. При построении этой теории фарадеевские модели были видоизменены и включены в её состав.

Это обстоятельство характерно для судеб любых частных теоретических схем, ассимилируемых развитой теорией. Они редко сохраняются в своём первоначальном виде, а чаще всего трансформируются и только благодаря этому становятся компонентом развитой теории.

Итак, строение развитой естественно-научной теории можно изобразить как сложную, иерархически организованную систему теоретических схем и законов, где теоретические схемы образуют своеобразный внутренний скелет теории.

Функционирование теорий предполагает их применение к объяснению и предсказанию опытных фактов. Чтобы применить к опыту фундаментальные законы развитой теории, из них нужно получить следствия, сопоставимые с результатами опыта. Вывод таких следствий характеризуется как развёртывание теории.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.)