АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

I. МЕХАНИКА И ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Читайте также:
  1. I. КЛАССИЧЕСКАЯ МЕХАНИКА
  2. II. КВАНТОВАЯ МЕХАНИКА
  3. XII. ЭЛЕМЕНТЫ ТЕОРИИ АЛГОРИТМОВ
  4. Активность личности, психоаналитические теории личности
  5. Антропологические теории мифа
  6. Антропологические теории ритуала
  7. Атрибуты (элементы данных).
  8. Банковская система и ее элементы взаимосвязи
  9. Билет 2. Теории исторического развития
  10. Билет № 35 Проблема познания в философии. Основные направления в теории познания.
  11. Биография Ч. Дарвина. Основные его труды. Оценка теории Ч. Дарвина, ее значение.

 

1. Кинематика поступательного и вращательного движений

материальной точки

 

Механическим движением тел называют изменение их положения (или положения их частей) в пространстве с течением времени. В основе классической механики лежат законы Ньютона.

Кинематика изучает механическое движение с геометрической точки зрения и не рассматривает причины, вызывающие это движение. В механике рассматривается движение таких объектов, как материальная точка и абсолютно твердое тело.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.

Абсолютно твёрдым телом называется тело, деформацией которого в данных условиях можно пренебречь. Абсолютно твёрдое тело можно рассматривать как систему материальных точек, жестко связанных между собой.

 

1.1. Кинематические характеристики движения материальной точки

 

Описать движение материальной точки – значит знать ее положение относительно выбранной системы отсчета в любой момент времени. Системойотсчёта называется система координат, связанная с телом отсчёта и снабжённая синхронизированными часами. Наиболее часто используется прямоугольная декартова система координат (рис. 1).

 

Рис. 1

Положение материальной точки характеризуется радиусом-вектором , проведённым из начала координат в данную точку (рис. 1). Проекции радиуса-вектора на координатные оси соответствуют координатам точки в выбранной системе координат (рис. 1):   .   Движение материальной точки задано, если известна зависимость координат точки от времени, т.е.

или .

Данные уравнения являются кинематическими уравнениями движения материальной точки, или законом движения точки. В процессе движения конец радиуса-вектора, связанный с точкой, описывает в пространстве кривую, называемую траекторией движения материальной точки. В зависимости от формы траектории различают прямолинейное и криволинейное движения.

Перемещением материальной точки назы­ва­ют вектор, проведённый из начальной точки в конечную точку траектории (рис. 1):

.

Вектор может быть выражен через приращения координат и орты соответствующих осей (единичные векторы, направленные по осям):

.

Модуль вектора перемещения можно определить следующим образом:

.

Путь материальной точки S12 - это длина траектории.

Скорость - векторная физическая величина, характеризующая быстроту изменения положения тела в пространстве, равная перемещению тела за единицу времени. Различают среднюю и мгновенную скорости.

- средняя скорость;

 

- мгновенная скорость;

 

- среднее значение модуля скорости.

Вектор средней скорости направлен так же, как и вектор перемещения . Вектор мгновенной скорости направлен по касательной к траектории движения так же, как вектор элементарного перемещения: . Так как , где dS - элементарный путь, то модуль мгновенной скорости равен производной пути по времени:

.

В декартовой системе координат скорость можно представить через её проекции на оси:


 

Модуль скорости может быть найден по следующей формуле:

.

При рассмотрении движения тела относительно двух различных инерциальных систем отсчета используют классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно движущейся системы и скорости самой движущейся системы относительно неподвижной :

.

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости с течением времени, равная приращению скорости за единицу времени. Различают среднее и мгновенное ускорения.

- среднее ускорение,

 

- мгновенное ускорение.

Вектор ускорения может быть представлен через его проекции на координатные оси:

,

где , , .

 

Модуль ускорения можно определить следующим образом:

.

 

1.2. Тангенциальная и нормальная составляющие ускорения

 

Часто используется представление ускорения через две составляющие: тангенциальное и нормальное ускорения (рис. 2):

 
 

 

 


 

Рис. 2

  ;   .  

Тангенциальное ускорение характеризует изменение скорости по модулю (величине) и направлено по касательной к траектории:

,

где - производная модуля скорости, - единичный вектор касательной, совпадающий по направлению со скоростью.

Нормальное ускорение характеризует изменение скорости по направлению и направлено по радиусу кривизны к центру кривизны траектории в данной точке:

,

где R - радиус кривизны траектории, - единичный вектор нормали.

Модуль вектора ускорения может быть найден по формуле

.

 

1.3. Основная задача кинематики

 

Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:

; ; ; ;

.

Частные случаи прямолинейного движения:

1) равномерное прямолинейное движение: ;

2) равнопеременное прямолинейное движение: .

 

1.4. Вращательное движение и его кинематические характеристики

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики (рис. 3).

Угловое перемещение - вектор, численно равный углу поворота тела за время и направленный вдоль оси вращения так, что, глядя вдоль него, поворот тела наблюдается происходящим по часовой стрелке.

Угловая скорость - характеризует быстроту и направление вращения тела, равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.

При вращательном движении справедливы следующие формулы:

; ; .

Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно первой производной угловой скорости и направлено вдоль оси вращения:

; ; .

Зависимость выражает закон вращения тела.

При равномерном вращении: e = 0, w = const, j = wt.

При равнопеременном вращении: e = const, , .

Рис. 3

 

Для характеристики равномерного вращательного движения используются период вращения и частота вращения.

Период вращения Т – время одного оборота тела, вращающегося с постоянной угловой скоростью.

Частота вращения n – количество оборотов, совершаемых телом за единицу времени.

Угловая скорость может быть выражена следующим образом:

.

Связь между угловыми и линейными кинематическими характеристиками (рис. 4):

 

Рис. 4

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.)