АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Билет № 32

Читайте также:
  1. Билет 1
  2. БИЛЕТ 1
  3. Билет 1
  4. БИЛЕТ 1
  5. Билет 1
  6. Билет 1
  7. Билет 1
  8. Билет 1
  9. Билет 1 Восточные славяне. Расселение, основные занятия, религия. Военная демократия.
  10. Билет 1. Предмет истории как науки: цели и задачи ее изучения
  11. Билет 1.(12)
  12. Билет 10

1. ГОСТ 28147-89. Гаммирование с обратной связью.

Гаммирование с обратной связью

Основная статья: Режим обратной связи по шифротексту

Схема работы в режиме гаммирования с обратной связью

Алгоритм шифрования похож на режим гаммирования, однако гамма формируется на основе предыдущего блока зашифрованных данных, так что результат шифрования текущего блока зависит также и от предыдущих блоков. По этой причине данный режим работы также называют гаммированием с зацеплением блоков.

Алгоритм шифрования следующий:

Синхропосылка заносится в регистры N1 и N2

Содержимое регистров N1 и N2 шифруется в соответствии с алгоритмом простой замены. Полученный результат является 64-битным блоком гаммы.

Блок гаммы побитово складывается по модулю 2 с блоком открытого текста. Полученный шифротекст заносится в регистры N1 и N2

Операции 2-3 выполняются для оставшихся блоков требующего шифрования текста.

При изменении одного бита шифротекста, полученного с использованием алгоритма гаммирования с обратной связью, в соответствующем блоке расшифрованного текста меняется только один бит, а следующий и все остальные блоки меняются полностью непредсказуемо.[1]

2.????

 

Билет № 33

1. ГОСТ 28147-89. Режимы выработки и иммотопостановки

Режим выработки имитовставки

Имитовставка

Схема выработки имитовставки

Этот режим не является в общепринятом смысле режимом шифрования. При работе в режиме выработки имитовставки создается некоторый дополнительный блок, зависящий от всего текста и ключевых данных. Данный блок используется для проверки того, что в шифротекст случайно или преднамеренно не были внесены искажения. Это особенно важно для шифрования в режиме гаммирования, где злоумышленник может изменить конкретные биты, даже не зная ключа; однако и при работе в других режимах вероятные искажения нельзя обнаружить, если в передаваемых данных нет избыточной информации.

Имитовставка вырабатывается для M ≥ 2 блоков открытого текста по 64 бит. Алгоритм следующий:

Блок открытых данных записывается в регистры N1 и N2, после чего подвергается преобразованию, соответствующему первым 16 циклам шифрования в режиме простой замены

К полученному результату побитово по модулю 2 прибавляется следующий блок открытых данных. Последний блок при необходимости дополняется нулями. Сумма также шифруется в соответствии с пунктом 1.

После добавления и шифрования последнего блока из результата выбирается имитовставка длиной L бит: с бита номер 32-L до 32(отсчет начинается с 1). Стандарт рекомендует выбирать L исходя из того, что вероятность навязывания ложных данных равна 2-L. Имитовставка передается по каналу связи после зашифрованных блоков.

Для проверки принимающая сторона после расшифрования текста проводит аналогичную описанной процедуру. В случае несовпадения результата с переданной имитовставкой все соответствующие M блоков считаются ложными.

Следует отметить, что выработка имитовставки может проводиться параллельно шифрованию с использованием одного из описанных выше режимов работы.[1]

Узлы замены (S-блоки)

Все восемь S-блоков могут быть различными. Некоторые считают, что они могут являться дополнительным ключевым материалом, увеличивающим эффективную длину ключа; однако существуют применимые на практике атаки, позволяющие их определить.[3] Впрочем, и необходимости в увеличении длины ключа нет, 256 бит вполне достаточно в настоящее время.[4] Как правило, таблицы замен являются долговременным параметром схемы, общим для определенной группы пользователей. В ГОСТ Р 34.11-94 для целей тестирования приведены следующие S-блоки:

Данный набор S-блоков используется в криптографических приложениях ЦБ РФ.[4]

В тексте стандарта указывается, что поставка заполнения узлов замены (S-блоков) производится в установленном порядке, то есть разработчиком алгоритма. Сообщество российских разработчиков СКЗИ согласовало используемые в Интернет узлы замены, см. RFC 4357.

Достоинства ГОСТа

бесперспективность силовой атаки (XSL-атаки в учёт не берутся, так как их эффективность на данный момент полностью не доказана);

эффективность реализации и соответственно высокое быстродействие на современных компьютерах.

наличие защиты от навязывания ложных данных (выработка имитовставки) и одинаковый цикл шифрования во всех четырех алгоритмах ГОСТа.

 

 

Межсетевые экраны

 

Межсетевой экран (firewall) - это устройство контроля доступа в сеть, предназначенное для блокировки всего трафика, за исключением разрешенных данных. Межсетевой экран – устройство, которое либо пропускает трафик через себя, либо блокирует его, основываясь на заранее определённых правилах.

Межсетевые экраны, как правило, обладают большим набором настроек. Прохождение трафика на межсетевом экране можно настраивать по службам, IP-адресам отправителя и получателя, по идентификаторам пользователей, запрашивающих службу. Межсетевые экраны позволяют осуществлять централизованное управление безопасностью. В одной конфигурации администратор может настроить разрешенный входящий трафик для всех внутренних систем организации. Это не устраняет потребность в обновлении и настройке систем, но позволяет снизить вероятность неправильного конфигурирования одной или нескольких систем, в результате которого эти системы могут подвергнуться атакам на некорректно настроенную службу.

 

Классификация

Межсетевые экраны можно разделять на классы по различным признакам.

 

1. По расположению в сети:

а).Персональный брандмауэр (внутренний) (personal firewall) – программа, которая устанавливается на каждую рабочую станцию в сети и контролирует соединения, которые пытается установить то или иное приложение. Внутренние сетевые экраны могут поддерживать несколько протоколов, например, при использовании сетевой операционной системы Novell Netware, следует принимать во внимание протокол SPX/IPX.

 

б).Распределённый межсетевой экран (внешний) (distributed firewall) обычно устанавливается на «разрыв» между внутренней сетью и Интернетом и проверяет весь трафик, который проходит через него. При наличии достаточно большой сети имеет смысл установка нескольких межсетевых экранов: для каждого отдела или рабочей группы – в качестве средства защиты от атак внутри сети компании.

Внешние межсетевые экраны обычно работают только с протоколом TCP/IP глобальной сети Интернет.

2. По уровню фильтрации, соответствующему эталонной модели OSI/ISO.

Работа всех межсетевых экранов основана на использовании информации разных уровней модели OSI. Как правило, чем выше уровень модели OSI, на котором межсетевой экран фильтрует пакеты, тем выше обеспечиваемый им уровень защиты.

Межсетевые экраны разделяют на четыре типа:

межсетевые экраны с фильтрацией пакетов;

шлюзы сеансового уровня;

шлюзы прикладного уровня;

межсетевые экраны экспертного уровня.

Функции межсетевых экранов

Для противодействия несанкционированному межсетевому доступу МЭ должен располагаться между защищаемой сетью организации, являющейся внутренней, и потенциально враждебной внешней сетью (рис. 3). При этом все взаимодействия между этими сетями должны осуществляться только через МЭ. Организационно МЭ входит в состав защищаемой сети.

Рис. 3. Схема подключения межсетевого экрана МЭ

 

МЭ, защищающий сразу множество узлов внутренней сети, призван решить:

задачу ограничения доступа внешних (по отношению к защищаемой сети) пользователей к внутренним ресурсам корпоративной сети. К таким пользователям могут быть отнесены партнеры, удаленные пользователи, хакеры и даже сотрудники самой компании, пытающиеся получить доступ к серверам баз данных, защищаемых МЭ;

задачу разграничения доступа пользователей защищаемой сети к внешним ресурсам. Решение этой задачи позволяет, например, регулировать доступ к серверам, не требующимся для выполнения служебных обязанностей.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)