|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Индексы средних величин в статистикеПри изучении качественных показателей часто приходится рассматривать изменение во времени (или пространстве) средней величины индексируемого показателя для определенной однородной совкупности. Например, в статистических сборниках публикуются данные о динамике средних цен, средней номинальной заработной плате в отдельных отраслях и т.д. Средняя величина является обощающей характеристикой качественного показателя и складывается как под влиянием значений показателя у индивидуальных элементов (единиц), из которых состоит объект, так и под влиянием соотношения их весов («структуры» объекта). Если любой качественный индексируемый показатель обозначить через x, а его веса – через f, то динамику среднего показателя можно отразить как за счет изменения обоих факторов (x и f), так и за счет каждого фактора отдельно. В результате получим 3 различных индекса: индекс переменного состава, индекс фиксированного состава и индекс структурных сдвигов. Индекс переменного состава отражает динамику среднего показателя (для однородной совокупности) за счет изменения индексируемой величины x у отдельных элементов (частей целого) и за счет изменения весов f, по которым взвешиваются отдельные значения x. Любой индекс переменного состава – это отношение двух средних величин для однородной совокупности (за два периода или по двум территориям) (202): . (202) Свое название этот индекс получил потому, что он характеризует динамику средних величин не только за счет изменения индексируемой величины у отдельных элементов (частей целого), но и за счет изменения удельного веса этих частей в общей совокупности, т.е. изменения состава совокупности. Индекс фиксированного состава отражает динамику среднего показателя лишь за счет изменения индексируемой величины x, при фиксировании весов. Если фиксировать веса на уровне отчетного периода f 1, то получим формулу самую распространенную[57] формулу индекса фиксированного состава (203): .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |