|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
II. ИСТОРИЯ МАТЕМАТИКИ ДО 19 ВЕКАВ предлагаемой далее периодизации истории М. даётся только её глобальная характеристика, относящаяся на ранних стадиях к Европе, Азии и Северной Африке и не учитывающая ни региональные особенности, иногда довольно существенные, ни частое отсутствие синхронности прогресса математич. знаний в различных регионах и странах. Ясное понимание самостоятельного положения М. как особой науки, имеющей собственный предмет и метод, стало возможным только после накопления достаточно большого фактич. материала и возникло впервые в Др. Греции в 6—5 вв. до н. э. Развитие М. до этого времени естественно отнести к периоду зарождения математик и, а к 6—5 вв. до н. э. приурочить начало периода элементарной математики, продолжавшегося до 16 в. В течение этих двух первых периодов математич. исследования имеют дело преимущественно с весьма ограниченным запасом основных понятий, возникших ещё на очень ранних ступенях историч. развития в связи с самыми простыми запросами хозяйственной жизни, сводившимися к счёту предметов, измерению количества продуктов, площадей земельных участков, определению размеров отдельных частей архитектурных сооружений, измерению времени, коммерческим расчётам, навигации и т. п. Первые задачи механики и физики за исключением отдельных исследований Архимеда (3 в. до н. э.), требовавших уже начатков исчисления бесконечно малых, могли ещё удовлетворяться этим же запасом основных математич. понятий. Единственной наукой, к-рая задолго до широкого развития математич. изучения явлений природы в 17—18 вв. систематически предъявляла М. свои особые и очень большие требования, была астрономия, целиком обусловившая, напр., раннее развитие тригонометрии. В 17 в. новые запросы естествознания и техники заставляют математиков сосредоточить своё внимание на создании методов, позволяющих математически изучать движение, процессы изменения величин, преобразования геометрич. фигур (при проектировании и т. п.). С употребления переменных величин в аналитич. геометрии Р. Декарта и создания дифференциального и интегрального исчисления начинается период м а т е м а т и к и п е р е м е н н ы х величин. Дальнейшее расширение круга количественных отношений и пространственных форм, изучаемых М., привело в нач. 19 в. к необходимости отнестись к процессу расширения предмета математич. исследований сознательно, поставив перед собой задачу систематич. изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм. Создание Н. И. Лобачевским его “воображаемой геометрии”, получившей впоследствии вполне реальные применения, было первым значительным шагом в этом направлении. Развитие подобного рода исследований внесло в строение М. столь важные черты, что М. в 19 и 20 вв. естественно отнести к особому пер н-оду современной математики. Эта глобальная характеристика четырёх основных периодов будет дополнена в последующем изложении. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |