АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Фактор эквивалентности вещества Х, участвующего в ионообменном процессе, равен

Читайте также:
  1. E) созданию противоядия к токсичным веществам
  2. I. Психологические факторы низкой надежности персонала
  3. II фактор составляют показатели, свидетельствующие о богатстве и сложности понятийных репрезентаций.
  4. L.3.1. Процессы переноса вещества и тепла.
  5. VIII. Описание основных факторов риска, связанных с деятельностью Общества
  6. А) Ресурсные факторы
  7. Алгоритм решения дробно-рациональных неравенств.
  8. Анализ влияния факторов на косвенные расходы
  9. Анализ земельных ресурсов. Анализ факторных и результативных показателей.
  10. Анализ опасных факторов и разработка контрольных и предупреждающих действий.
  11. Анализ показателей оплаты труда и влияющих на них факторов. Документация для анализа использования фонда оплаты труда.
  12. Анализ потенциально вредных факторов производственной среды.

fэ (Х) = 1: (Ni·|zi|),

где Ni и zi - соответственно число и заряд ионов, которыми обменивается молекула реагирующего вещества со своим партнером.

Многоосновные кислоты НnА и многокислотные основания М(ОН)n имеют по n факторов эквивалентности: от 1 до 1/ n. Если факторы эквивалентности соляной кислоты HCl и гидроксида натрия NаОН в обменных процессах всегда равны 1, то у серной кислоты Н24 и гидроксида кальция Са(ОН)2 факторы эквивалентности равны 1 и 1/2, а у ортофосфорной кислоты Н3РО4 и гидроксида алюминия Аl(ОН)3 – 1, 1/2, 1/3.

Для солей фактор эквивалентности может быть найден по числу замещенных катионов или анионов.

Для солеобразующих оксидов фактор эквивалентности определяется числом катионов соответствующего оксиду основания или анионов соответствующей оксиду кислоты и их зарядом. В реакции между оксидом фосфора (V) и оксидом кальция

Р2О5 + СаО → Са3(РО4)2

фактор эквивалентности Р2О5, образующего два трехзарядных фосфат-иона (РО43-) равен 1/6, а для СаО, образующего один двухзарядный катион (Са2+), 1/2.

В некоторых реакциях молекулы одного вещества претерпевают разные превращения, например, одна часть молекул участвует в окислительно-восстановительном процессе, а другая часть молекул того же вещества – в процессе ионного обмена. Для такой реакции следует находить общий фактор эквивалентности, как сумму факторов эквивалентности, учитывающих каждое превращение данного вещества.

Пример 3. В нижеприведенных схемах реакций определите факторы эквивалентности исходных веществ:

а) LiOH + H3PO4 →Li2HPO4 + H2O

Молекула LiOH теряет в данной реакции один однозарядный ион ОН- , поэтому fэ (LiOH) = 1: (1·|-1|) = 1;молекула H3PO4 обменивается двумя однозарядными ионами Н+ , поэтому fэ (H3PO4) = 1: (2·|+1|) = 1:2.

б) Al2(SO4)3 +ВаCl2 →Ва SO4 + AlCl3

Величина fэ(Al2(SO4)3) может быть рассчитана либо по числу ионов алюминия, замещенных ионами бария, либо по числу сульфат-ионов, образующих с ионами бария осадок. И в том, и в другом случае результат одинаков:

fэ(Al2(SO4)3) = 1: (2·|+3|) = 1: (3·|-2|) = 1:6.

Величина fэ(ВаCl2)может быть рассчитана либо по числу ионов бария, замещенных ионами алюминия, либо по числу хлорид-ионов, образующих с ионами алюминия растворимую соль. fэ (ВаCl2)= 1: (1·|+2|) = 1: (2·|-1|) = 1:2.

в) ZnО + СО2 → ZnСО3

Величина fэ (ZnО), образующего один двухзарядный ион Zn 2+, равен 1/2;

fэ (СО2), образующего один двухзарядный ион (СО32-), равна 1/2.

г ) Zn + Н2SO4 (конц.) → Н2S + Zn SO4 + Н2О

Превращаясь вН2S-2, молекула Н2S+6 O4 присоединяет 8 электронов, т.е. fэ = 1/8; а образуя Zn SO4, молекула Н2SO4 теряет два иона Н+, т.е. fэ = 1/2. Общий фактор эквивалентности fэ2SO4) = 1/8 + 1/2 = 5/8.

Пример 4. Выразить эквивалентную массу оксида, гидроксида, сульфата и хлорида металла.

Решение. Эквивалентная массавещества в общем случае определяется по формуле (1.1). В частном случае ее можно представить как сумму эквивалентных масс составных частей молекулы или кристалла вещества.

1. Молекула или кристалл оксида любого элемента образованы атомами данного элемента и кислорода. Таким образом, эквивалентная масса оксида равна сумме эквивалентных масс элемента и кислорода:

 

 

Согласно формуле (1.1)

Мэ(О) = fэ (О)·М(О) = 16:2 = 8 г/моль.

 

 

Следовательно,

 

(1.2)

 

2. В состав гидроксида входят атомы металла и гидроксильные группы:

 

 

Согласно формуле (1.1)

 

Мэ(ОН-) = fэ (ОН-)·М(ОН-) = 17:1 = 17 г/моль.

 

Таким образом,

 

 

3. В молекулу сульфата металла входят ионы данного металла и сульфатные группы (SO4)2-:

 

 

Согласно формуле (1.1)

 

Мэ(SO4 2-) = fэ (SO4 2-)·М(SO4 2-) = 96:2 = 48 г/моль.

 

Таким образом,

 

 

4. Эквивалентную массу хлорида металла определяют по аналогии с предыдущими случаями:

 

Мэ(Cl-) = fэ (Cl-)·М(Cl-) = 35,5:1 = 35,5 г/моль

 

Закон эквивалентов. Массы (объемы) реагирующих друг с другом или образующихся в результате реакции веществ пропорциональны их эквивалентным массам Мэ (эквивалентным объемам для газов Vэ):

 

m1: Мэ1 = m2: Мэ2 = V1: Vэ1= V2: Vэ2.

Пример 5. Оксид марганца содержит 22,56% кислорода. Найти эквивалентную массу и валентность марганца в этом соединении. Составить формулу оксида.

Решение. Пусть масса оксида марганца равна 100 г, тогда масса кислорода будет составлять 22,56 г. На основании закона эквивалентов можно составить следующую пропорцию:

 

(1.3)

 

Примем Мэ(Мn) = А г/моль, тогда, согласно формулы (1.2), . Исходя из формулы (1.1), . Подставляя полученные значения в формулу (1.3), имеем

 

.

 

Решая уравнение относительно А, получим А = 27,5 г/моль.

Валентность марганца (по модулю совпадающую со степенью окисления) определим по формуле, связывающей молярную и эквивалентную массы элемента (1.1),

 

Мэ(Mn) = fэ (Mn )·М(Mn ) = М(Mn ): В (Mn ),

откуда

 

Так как в оксидах кислород двухвалентен, получаем следующую формулу оксида марганца: MnO.

Пример 6. Рассчитать массу сахарозы С12Н22О11, если на ее окисление до углекислого газа СО2 в присутствии серной кислоты израсходовано 100 г перманганата калия КМnО4 (в кислой среде образуется МnSО4).

Решение. В данной реакции степень окисления марганца изменяется от +7 (КМnО4) до +2 (МnSО4), а углерода – от 0 (С12Н22О11) до +4 (СО2). Следовательно, для перманганата калия fэ = 1/5, а для сахарозы 1/48, так как в ее молекулу входят 12 атомов углерода. Тогда Мэ (КМnО4) = 158:5 = 31,6 г/моль, и Мэ12Н22О11) =342:48 =7,1 г/моль.

Согласно закону эквивалентов

Тогда m(С12Н22О11) = m(КМnО4)·7,1/31,6 =710/31,6=22,45 г.

Газовые законы. Параметры состояния, единицы измерения: V – объем, м3; Р – давление, Па; Т – температура, К; m – масса газа, кг; М – молярная масса газа, кг/моль; Мэ – молярная масса эквивалента газа, кг/моль; R – универсальная газовая постоянная, R = 8,314 Дж/(моль·К).

Нормальные условия (н.у.): 273,15 К(0 °С); 1,0133·105 Па (760 мм рт.ст.).

Объединенный газовый закон: р·V/Т = const.

Уравнение Клапейрона - Менделеева: р·V = m RТ/М.

 

Закон Авогадро: В равных объемах любых газов при одинаковых условиях (температура и давление) содержится одинаковое число соответствующих структурных единиц (молекул или атомов).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)