|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Тригонометрическая и показательная форма комплексного числаВ данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже. Рекомендую закачать и по возможности распечатать тригонометрические таблицы, методический материал можно найти на странице Математические формулы и таблицы. Без таблиц далеко не уехать. Любое комплексное число (кроме нуля) можно записать в тригонометрической форме: Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что : Модулем комплексного числа называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом. Модуль комплексного числа стандартно обозначают: или По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений «а» и «бэ». Аргументом комплексного числа называется угол между положительной полуосью действительной оси и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: . Аргумент комплексного числа стандартно обозначают: или Из геометрических соображений получается следующая формула для нахождения аргумента: Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях. Пример 7 Представить в тригонометрической форме комплексные числа: , , , . На самом деле задание устное. Для наглядности перепишу тригонометрическую форму комплексного числа: Запомним намертво, модуль – длина (которая всегда неотрицательна), аргумент – угол. 1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: . Ясно, как день, обратное проверочное действие: 2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: . Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку): 3) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: . Проверка: 4) И четвёртый интересный случай. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: . Аргумент можно записать двумя способами: Первый способ: (270 градусов), и, соответственно: . Проверка: Однако более стандартно следующее правило: Если угол больше 180 градусов, то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла: (минус 90 градусов), на чертеже угол отмечен зеленым цветом. Легко заметить, что и – это один и тот же угол. Таким образом, запись принимает вид: Внимание! Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи: Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций, справочные материалы находятся в последних параграфах страницы Графики и свойства основных элементарных функций. И комплексные числа усвоятся заметно легче! В оформлении простейших примеров так и следует записывать: «очевидно, что модуль равен… очевидно, что аргумент равен...». Это действительно очевидно и легко решается устно. Перейдем к рассмотрению более распространенных случаев. Как я уже отмечал, с модулем проблем не возникает, всегда следует использовать формулу . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число . При этом возможны три варианта (их полезно переписать к себе в тетрадь): 1) Если (1-ая и 4-ая координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле . 2) Если (2-ая координатная четверть), то аргумент нужно находить по формуле . 3) Если (3-я координатная четверть), то аргумент нужно находить по формуле . Пример 8 Представить в тригонометрической форме комплексные числа: , , , . Коль скоро есть готовые формулы, то чертеж выполнять не обязательно. Но есть один момент: когда вам предложено задание представить число в тригонометрической форме, то чертёж лучше в любом случае выполнить. Дело в том, что решение без чертежа часто бракуют преподаватели, отсутствие чертежа – серьёзное основание для минуса и незачета. Эх, сто лет от руки ничего не чертил, держите: Как всегда, грязновато получилось =) Я представлю в комплексной форме числа и , первое и третье числа будут для самостоятельного решения. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Расскажу о забавном способе проверки. Если вы будете выполнять чертеж на клетчатой бумаге в том масштабе, который у меня (1 ед. = 1 см), то можно взять линейку и измерить модуль в сантиметрах. Если есть транспортир, то можно непосредственно по чертежу измерить и угол. Перечертите чертеж в тетрадь и измерьте линейкой расстояние от начала координат до числа . Вы убедитесь, что действительно . Также транспортиром можете измерить угол и убедиться, что действительно . Представим в тригонометрической форме число . Найдем его модуль и аргумент. Поскольку (случай 1), то (минус 60 градусов). Таким образом: А вот здесь, как уже отмечалось, минусы не трогаем. Кроме забавного графического метода проверки, существует и проверка аналитическая, которая уже проводилась в Примере 7. Используем таблицу значений тригонометрических функций, при этом учитываем, что угол – это в точности табличный угол (или 300 градусов): Числа и представьте в тригонометрической форме самостоятельно. Краткое решение и ответ в конце урока. В конце параграфа кратко о показательной форме комплексного числа. Любое комплексное число (кроме нуля) можно записать в показательной форме: Что нужно сделать, чтобы представить комплексное число в показательной форме? Почти то же самое: выполнить чертеж, найти модуль и аргумент. И записать число в виде . Например, для числа предыдущего примера у нас найден модуль и аргумент: , . Тогда данное число в показательной форме запишется следующим образом: . Число в показательной форме будет выглядеть так: Число – так: И т.д. Единственный совет – не трогаем показатель экспоненты, там не нужно переставлять множители, раскрывать скобки и т.п. Комплексное число в показательной форме записывается строго по форме .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |