АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

МЕТОДЫ ЗАЩИТЫ ОТ КОРРОЗИИ МЕТАЛЛОВ И СПЛАВОВ

Читайте также:
  1. A) на этапе разработки концепций системы и защиты
  2. I. Методы выбора инновационной политики
  3. II. Вывод и анализ кинетических уравнений 0-, 1-, 2-ого порядков. Методы определения порядка реакции
  4. II. Методы прогнозирования и поиска идей
  5. II. Порядок подготовки, защиты и оценки квалификационной работы
  6. III. Этические правила служебного поведения работников органов управления социальной защиты населения и учреждений социального обслуживания
  7. IV. Порядок защиты выпускной квалификационной работы
  8. S:Статистические методы анализа качества разработаны как
  9. V. Кибернетические (или постбиологические) методы достижения бессмертия (искусственная жизнь “в силиконе”)
  10. V. Правила и методы исследований при трансфузии (переливании) консервированной донорской крови и эритроцитсодержащих компонентов
  11. V1: Радиометрические методы контроля
  12. V1: Хроматографические методы контроля качества продовольственных товаров

Основным условием противокоррозийной защиты металлов и сплавов является уменьшение скорости коррозии. Уменьшить скорость коррозии можно, используя различные методы защиты металлических конструкций от коррозии. Основными из них являются:

1 Защитные покрытия.

2 Обработка коррозионной среды с целью снижения коррозионной активности (в особенности при постоянных объемах коррозионных сред).

3 Электрохимическая защита.

4 Разработка и производство новых конструкционных материалов повышенной коррозионной устойчивости.

5 Переход в ряде конструкций от металлических к химически стойким материалам (пластические высокомолекулярные материалы, стекло, керамика и др.).

6 Рациональное конструирование и эксплуатация металлических сооружений и деталей.

Билет 43

Коррозионностойкие покрытия. По механизму защиты различают анодные и катодные металлические покрытия. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий не обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающим коррозионном элементе основной металл–покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счёт растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как правило, обладают сравнительно низкой стойкостью.
Катодные металлические покрытия, электродный потенциал которых более электроположителен, чем потенциал основного металла, могут служить надёжной защитой от коррозии только при условии отсутствия в них сквозных пор, трещин и других дефектов, так как они механически препятствуют проникновению агрессивной среды к основному металлу. Примерами катодных защитных покрытий являются покрытия железа медью, никелем, хромом и т.п.

 

 

Билет 50

Энергия ионизации — разновидность энергии связи или, как её иногда называют, первый ионизационный потенциал (I1), представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность.

Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят такжевосстановительные свойства соответствующего простого вещества.

Для многоэлектронного атома существуют также понятия второго, третьего и т. д. ионизационных потенциалов, представляющих собой энергию удаления электрона от его свободных невозбуждённых катионов с зарядами +1, +2 и т. д. Эти ионизационные потенциалы, как правило, менее важны для характеристики химического элемента.

Энергия ионизации всегда имеет эндоэнергетическое значение (это понятно, так как чтобы оторвать электрон от атома, требуется приложить энергию, самопроизвольно это произойти не может).

На энергию ионизации атома наиболее существенное влияние оказывают следующие факторы:

1. эффективный заряд ядра, являющийся функцией числа электронов в атоме, экранирующих ядро и расположенных на более глубоко лежащих внутренних орбиталях;

2. радиальное расстояние от ядра до максимума зарядовой плотности наружного, наиболее слабо связанного с атомом и покидающего его при ионизации, электрона;

3. мера проникающей способности этого электрона;

4. межэлектронное отталкивание среди наружных (валентных) электронов.

На энергию ионизации оказывают влияние также и менее значительные факторы, такие, как квантовомеханическое обменное взаимодействие, спиновая и зарядовая корреляция и др.

Энергии ионизации элементов измеряется в Электронвольт на 1 атом или в Джоуль на моль.

Электроотрицательность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе общие электронные пары.

Практика

1.

1. Определите, как изменится скорость реакции, если концентрация исходных веществ увеличится в N раз.

изменение концентрации: увеличение концентрации исходных веществ приводит к увеличению скорости прямой реакции, при этом протекающий в системе процесс завершится, когда скорости прямой и обратной реакций станут равны и установится новое равновесие. Уменьшение концентрации одного из продуктов реакции (вывод из системы) приводит к смещению равновесия в сторону его образования.

CO2+2NH3-->(NH2)2CO+H2O

v1= k*c(CO2)*c^2(NH3)

v2 = k*2c(CO2)*2c(NH3)*2c(NH3) = k*2c(CO2)*4c^2(NH3)

v2/v1 = (k*2c(CO2)*4c^2(NH3)) / (k*c(CO2)*c^2(NH3))

v2/v1 = 8


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)