|
||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Коэффициент корреляции. Перейдем к оценке тесноты корреляционной зависимости
Перейдем к оценке тесноты корреляционной зависимости. Рассмотрим наиболее важный для практики и теории случай линейной зависимости. На первый взгляд подходящим измерителем тесноты связи у от х является коэффициент регрессии bух, так как он показывает, на сколько единиц в среднем изменяется у, когда х увеличивается на одну единицу. Однако byx зависит от единиц измерения переменных. Очевидно, что для «исправления» bух как показателя тесноты связи нужна такая стандартная система единиц измерения, в которой данные по различным характеристикам оказались бы сравнимы между собой. Статистика знает такую систему единиц. Эта система использует в качестве единицы измерения переменной ее среднее квадратическое отклонение . Введем формулу:
.
В ней ryx показывает, на сколько величин изменится в среднем y, когда x увеличится на одно значение . Величина r является показателем тесноты линейной связи и называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). На рисунке 1.1 приведены две корреляционные зависимости переменной у от х. Очевидно, что в случае а) зависимость между переменными менее тесная и коэффициент корреляции должен быть меньше, чем в случае б), так как точки корреляционного поля а) дальше отстоят от линии регрессии, чем точки поля б).
Нетрудно видеть, что r совпадает по знаку с bух (а значит, и с bху). Если r > 0 (bух >0, bху >0), то корреляционная связь между переменными называется прямой, если r < 0 (bух <0, bху <0) — обратной. При прямой (обратной) связи увеличение одной из переменных ведет к увеличению (уменьшению) условной (групповой) средней другой. Формулу для r можно представить в виде: r = , т.е. формула для r симметрична относительно двух переменных, и переменные у и х можно менять местами. Тогда аналогично формуле: можно записать: . Найдя произведение обеих частей равенств получим: r2= = bухbху или r= , т.е. коэффициент корреляции r переменных у и х есть средняя геометрическая коэффициентов регрессии, имеющая их знак. Основные свойства коэффициента корреляции (при достаточно большом объеме выборки n): 1. Коэффициент корреляции принимает значения на отрезке -1 ≤ r ≤ 1. В зависимости от того, насколько | r | приближается к 1, различают связь слабую, умеренную, заметную, достаточно тесную, тесную и весьма тесную, т.е. чем ближе | r | к 1, тем теснее связь. 2. Если все значения переменных увеличить (уменьшить) на одно и то же число или в одно и то же число раз, то величина коэффициента корреляции не изменится. 3. При r корреляционная связь представляет линейную функциональную зависимость. При этом линии регрессии у пo х и х пo у совпадают и все наблюдаемые значения располагаются на обшей прямой (рис. 1.2.).
4. При r = 0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общими средними, а линии регрессии у пo х и х пo у параллельны осям координат. Если r = 0, то коэффициент bух=bху =0, и линии регрессии имеют вид: ух= и ху= (рис. 1.3).
Равенство r = 0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелированности переменных), но не вообще об отсутствии корреляционной, а тем более статистической, зависимости. Пример. При исследовании корреляционной зависимости между объемом валовой продукции у (млн. руб.) и среднесуточной численностью работающих х (тыс. чел.) для ряда предприятий отрасли получено следующее уравнение регрессии х по у: ху=0,2у – 2,5. Коэффициент корреляции между этими признаками оказался равным 0,8, а средний объем валовой продукции предприятий составил 40 млн. руб. Найти: а) среднее значение среднесуточной численности работающих на предприятиях; б) уравнение регрессии у по х; в) средний объем валовой продукции на предприятиях со среднесуточной численностью работающих 4 тыс. чел. Решение: а) Обе линии регрессии у по х и х по у пересекаются в точке (), поэтому найдем по заданному уравнению регрессии при у = = 40, т.е. = = 5,5 (тыс. чел.). б) Учитывая, что: r2= = bухbху, вычислим коэффициент регрессии bух: bух= . По формуле получим уравнение регрессии у по х: или . в) ух=4 найдем по полученному уравнению регрессии у по х: (млн. руб.). Пример. Найти коэффициент корреляции между производительностью труда у (тыс. руб.) и энерговооруженностью труда х (кВт) (в расчете на одного работающего) для 14 предприятий региона по следующим данным:
Решение. Вычислим необходимые суммы:
Используя еще один вариант формулы для расчета r, получим: Значение r=0,898 говорит о тесной связи между переменными.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |