|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
IV. Трансмиссивные инфекции, возбудителей которых распространяют насекомые-переносчики, размножающиеся в воде (малярия, желтая лихорадка)История знает много примеров эпидемий, вспыхнувших вследствие потребления загрязненной патогенными микроорганизмами воды из водоемов и водопроводов. Наиболее ярко роль водного фактора в распространении инфекционных заболеваний проявилась во время эпидемии холеры, которая в Лондоне в 1854 г. была впервые признана водной. Но наиболее массовые эпидемии кишечных инфекций зарегистрированы во второй половине XIX ст., что совпало с периодом бурного строительства водопроводов. Первые водопроводы, в которых преимущественно использовали воду из поверхностных водоемов, иногда не улучшали, а, наоборот, ухудшали санитарное состояние населенных пунктов. Это объясняется как нехваткой очистных сооружений на водопроводе, так и загрязнением водоемов из-за концентрации населения в городах. Вследствие этого возникли эпидемии брюшного тифа в Гамбурге и Лондоне, холеры — в Петербурге, в Ростове-на-Дону, других населенных пунктах. Классические водные эпидемии описал выдающийся эпидемиолог профессор Л.В. Громашевский. Так, весной 1926 г. в Ростове-на-Дону вспыхнула острая водная эпидемия брюшного тифа. В то время в городе функционировало централизованное водоснабжение. Артезианскую воду подавали из подземных каптажных галерей. В результате разрыва канализационной сети нечистоты просочились в почву в радиусе 20 м и попали в подземные каптажные галереи. Сразу же после этого почти 20 тыс. человек обратились за медицинской помощью по поводу кишечных расстройств неясной этиологии. А еще через 2 — 3 нед резко увеличилась заболеваемость брюшным тифом (рис. 1). В период пика эпидемии заболели почти 2 тыс. человек. В дальнейшем уровень заболеваемости брюшным тифом снизился, однако превышал спорадический на протяжении лета, вплоть до сентября. Хроническая водная эпидемия холеры была зарегистрирована в начале XXст. в Санкт-Петербурге. Неполная обеспеченность города централизованным водоснабжением и канализацией, отсутствие обеззараживания воды на водопроводе привели к тому, что завезенная в 1908 г. холера стала в Санкт-Петербурге перманентной. Уровень смертности от нее в период до 1909 г. составлял 80 на 10 тыс. населения. Городские власти были вынуждены в 1909 г. внедрить на водопроводе очистные сооружения и обеззараживание воды хлором, благодаря чему смертность от холеры снизилась почти вдвое и составляла 45 на 100 тыс. населения. Ситуация значительно улучшилась после 1922 г., когда был кардинально реконст- Рис. 1. Кривая заболеваемости брюшным тифом в Ростове-на-Дону в 1924—1927 гг. (по Л.В. Громашевскому, 1949) руирован водопровод и центральное водоснабжение охватило весь город. Уровень заболеваемости сразу снизился почти втрое (до 15 на 10 тыс. населения). В современных условиях на пути распространения инфекционных болезней водным путем существует много препятствий: сооружения для очистки и обеззараживания сточных вод перед их сбрасыванием в водоемы; процессы самоочищения водоемов; сооружения для очистки и обеззараживания воды на водопроводных станциях. Казалось бы, есть все возможности для ликвидации распространения инфекционных болезней водным путем, однако этого не удается достичь на протяжении многих лет. Сейчас в мире инфекционная заболеваемость населения, связанная с водоснабжением, превышает 500 млн случаев в год. По данным ВОЗ, ежегодно вследствие низкого качества питьевой воды погибают почти 5 млн человек. В Украине с 1992 по 1996 г. зарегистрировано 29 вспышек острых кишечных инфекций, из которых 12 вызваны Sh. flexneri, 10 — S. thyphi, 5 — возбудителями вирусного гепатита А. По одной вспышке вызвано возбудителями»S'A. sonnei и патогенными Е. coli. При этом заболели 7401 человек, причем наиболее часто регистрировалось поражение вирусом гепатита А — 5306 человек. В 1997 г. было зарегистрировали 8 водных вспышек, в 1998 г. — 12. Следует подчеркнуть, что полностью устранить риск возникновения кишечных инфекций невозможно, так как они могут распространяться не только через воду, но и через загрязненную пищу, руки, переноситься мухами и т. п. Вследствие этого поддерживается резервуар больных и носителей инфекции и спорадический уровень заболеваемости. Однако статистические данные убедительно свидетельствуют, что организация рациональной системы водоснабжения, очистки и обеззараживания воды на водопроводах способствует снижению заболеваемости населения кишечными инфекциями в 8—12 раз. Распространение инфекционных болезней через воду теоретически и практически возможно только при наличии одновременно трех условий. ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ ВОДЫ ТАБЛИЦА 1 Сроки выживания микроорганизмов в воде (Н.М. Милявская, 1947), сут
Во-первых, возбудители должны попасть в источник водоснабжения. При современном развитии канализации в населенных пунктах и постоянном наличии инфекционных больных и бактерионосителей (1—2% населения) эта угроза существует всегда. Во-вторых, патогенные микроорганизмы должны сохранять вирулентность и жизнеспособность в водной среде на протяжении длительного времени (табл. 1). Этим обеспечивается сохранение микроорганизмов как биологического вида. Хотя для возбудителей инфекционных болезней характерен паразитический образ жизни, наблюдения свидетельствуют о возможности их длительного существования вне организма человека. Сроки выживания патогенной микрофлоры в воде зависят от ряда факторов. Вода, по сравнению с другими объектами окружающей среды, такими, как почва и воздух, является более благоприятной средой для жизнедеятельности патогенных бактерий и вирусов. Длительность выживания увеличивается вследствие способности некоторых микроорганизмов (например, бацилл сибирской язвы, ботулизма и др.) при попадании во внешнюю среду образовывать споры как форму сохранения вида. У других патогенных микроорганизмов (например, микобактерии туберкулеза и лепры) повышенная устойчивость обеспечивается за счет высокого содержания липидов (25—40%) в бактериальной клетке. Важную роль играет и количество микроорганизмов, которое попало в воду. Чем выше исходная доза загрязнения, тем продолжительнее сроки выживания микробов в воде. Выживанию патогенных микроорганизмов способствует одновременное попадание в водоем биологического субстрата, являющегося естественной средой их обитания, т. е. фекалий, мочи, мокроты, остатков трупов животных и т.п. Сохранению возбудителей способствует низкая и даже минусовая температура без периодического замораживания и оттаивания. Большое значение имеют особенности водоема, антагонизм его сапрофитной микрофлоры и разнообразных гидробионтов, уровень техногенного химического загрязнения воды, комплекс гидрологических и метеорологических факторов. РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ В-третьих, возбудители инфекционных болезней должны попасть в организм человека с питьевой водой. Это условие может реализоваться при нарушении технологии очистки и обеззараживания воды или правил эксплуатации водопровода. В частности, в случае загрязнения источника воды на участке водозабора вследствие отведения неочищенных или недостаточно очищенных сточных вод в поверхностные водоемы, проникновения воды из расположенных выше горизонтов (поверхностных водоемов, верховодки, грунтовых вод) в межпластовые воды при нарушении герметичности водонепроницаемого перекрытия, несоблюдения режима очистки и обеззараживания на водопроводных станциях, неудовлетворительного санитарно-технического состояния водопроводной и канализационной сетей, неправильного устройства и эксплуатации водоразборных колонок и т. п. Для загрязнения воды в водопроводной сети при централизованном водоснабжении необходимые три условия: 1) нарушение герметичности водопроводных труб; 2) образование вакуума в трубах; 3) наличие источника загрязнения вблизи участка нарушения герметичности водопроводных труб. Кроме того, инфицирование возможно при использовании для питья и хозяйственно-бытовых нужд воды из технического водопровода, из цистерн, баков и т. п. Заражение энтеропатогенной микрофлорой может произойти и в случае заглатывания воды во время купания в поверхностных водоемах или употребления в пищу грязных овощей, выросших на полях, орошаемых речной водой. Врачу медико-профилактической специальности для выбора правильной тактики во время разработки профилактических мероприятий и контроля за их соблюдением, нужно четко знать не только перечисленные выше условия загрязнения воды, но и признаки водных эпидемий. Основным из них является одновременное появление большого количества больных с кишечными инфекциями, т. е. резкое повышение заболеваемости населения, так называемая эпидемическая вспышка. К тому же болеют люди, которые пользовались либо одним водопроводом (если нарушен процесс обеззараживания на водопроводной станции), или одной веткой водопроводной сети (если загрязнение воды произошло в сети), или одной колонкой (так называемая колонковая эпидемия в случае загрязнения воды в колонке), или одним шахтным колодцем. Заболеваемость длительное время удерживается на высоком уровне, по мере загрязнения воды и употребления ее населением. После проведения комплекса противоэпидемических мероприятий (ликвидации очага загрязнения, дезинфекции водопроводных сооружений, санации колодца и т. п.) вспышка угасает, заболеваемость резко снижается, кривая инфекционной заболеваемости падает. Однако заболеваемость остается повышенной (более высокой, чем спорадический уровень) еще некоторое время, т. е. наблюдается так называемый эпидемический шлейф. Это вызвано появлением во время вспышки эпидемии большого количества новых потенциальных источников инфекции (больных и носителей) и активизацией других путей распространения патогенных микроорганизмов от этих источников — контактно-бытовых, через загрязненные руки, детские игрушки, предметы ухода, продукты питания или живыми переносчиками (мухами) и т. п. ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ ВОДЫ Кривая заболеваемости инфекционными болезнями, которые вызваны недоброкачественной водой, имеет одно-, двух-, трехгорбый или иной характер, что связано с инкубационным периодом. Например, инкубационный период при гастроэнтероколите эшерихиозной и сальмонеллезной этиологии составляет 1—3 сут, при холере — 1—5 сут, при дизентерии — 1—7 сут, при паратифах А и В — 7—14 сут, при брюшном тифе — 14—21 сут, при вирусном гепатите А и Е — 30 сут и более и т. п. Поэтому прежде всего будут регистрироваться заболевания с коротким инкубационным периодом (например, гастроэнтеро-колиты) и лишь потом — с длительным (паратифы А и В, брюшной тиф, вирусный гепатит А и т. п.). Эндемическое значение воды. Массовые заболевания населения инфекционной природы — наиболее угрожающее, однако не единственное негативное последствие употребления недоброкачественной воды. Массовые поражения могут иметь неинфекционную природу, т. е. их причиной может быть наличие в воде химических — как минеральных, так и органических, примесей. Проблема влияния химического состава воды на здоровье населения давно интересовала ученых, однако первые научно обоснованные представления об этом появились лишь в начале XX ст. Весомый вклад в развитие этих представлений принадлежит русским и украинским ученым. Выдающиеся почвоведы, геохимики и биогеохимики В.И. Вернадский и А.П. Виноградов при изучении микроэлементного состава почв в различных регионах бывшего Советского Союза отметили, что в некоторых местностях содержание тех или иных химических элементов почвы или слишком высоко, или, наоборот, слишком мало. Недостаток или избыток тех или иных элементов в почве приводил к недостатку или избытку их в воде поверхностных или подземных водоемов, которые формируются на этой территории, а вследствие этого — ив питьевой воде. Кроме того, аномально высокое или низкое содержание химического элемента наблюдалось и в пищевых продуктах растительного и животного происхождения. Это определенным образом влияло на здоровье людей, постоянно проживающих в данной местности, — у них зарегистрированы болезни, которые в других регионах не выявлялись. Такие местности назвали биогеохимическими провинциями, а регистрировавшиеся там болезни—геохимическими эндемиями, или эндемическими заболеваниями. В табл. 2 обобщена информация о наиболее распространенных эндемических болезнях, ареалах их распространения, причинах и основных клинических проявлениях. Существуют также ртутные (Горный Алтай), сурьмяные (Ферганская долина), медно-цинковые (Баймакская область), медные (Урал, Алтай, Донецкая обл. Украины, Узбекистан), кремниевые (Чувашия, Придунайские районы Болгарии и Югославии), хромовые (Северный Казахстан, Азербайджан) и другие биогеохимические провинции. Среди упомянутых эндемических заболеваний особенно тесно связаны с употреблением воды эндемический флюороз, эндемический кариес, водно-нитратная метгемоглобинемия и эндемический зоб. РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ ТАБЛИЦА 2 Эндемические болезни и их характеристика
ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ ВОДЫ Продолжение табл. 2
1 Микроэлементозы — патологические состояния, вызванные недостатком (гипомикроэлемен- 2 Гигиенические нормативы содержания в питьевой воде приведены в табл. 5, 6. РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ Известно, что фтор так же, как и другие биомикроэлементы, является эссен-циальным1 фактором с параболической дозоэффектной зависимостью, наличием диапазона биологического оптимума и возможностью развития гипо-или гипермикроэлементоза при условии недостаточного или избыточного поступления в организм человека. Суточная потребность во фторе составляет 3,2—4,2 мг, из которых от 70 до 85% поступает с питьевой водой. Именно этим фтор отличается от других микроэлементов, 70—85% суточной потребности которых почти всегда покрывается за счет пищевых продуктов. Избыточное поступление фтора в организм вызывает эндемический флюороз, недостаточное — способствует развитию кариеса. В большинстве случаев в поверхностных слоях почвы природное содержание фтора низкое. Поэтому его концентрация в воде поверхностных водоемов не превышает 0,7 мг/л и составляет 0,5—0,6 мг/л. При этих условиях поступление фтора в организм с питьевой водой (3 л/сут) является недостаточным для формирования фторапатитов, укрепляющих кристаллические решетки гидрооксиапа-титов, из которых почти на 97% сформирована эмаль зуба. Прочность эмали снижается. Она становится проницаемой для молочной кислоты, образующейся в ротовой полости из углеводов пищи. Это приводит к активизации процесса вымывания кальция из эмали, т. е. деминерализация превалирует над реминера-лизацией. Эмаль становится еще менее прочной, проницаемой не только для молочной кислоты, но и для протеолитических ферментов микроорганизмов ротовой полости. Начинается разрушение органической части эмали, а впоследствии и дентина, развивается их деструктивное поражение, получившее название кариеса. В то же время в ряде регионов подземные воды содержат фтор в высоких концентрациях. Так, в воде Бучакского водоносного горизонта, который формируется во фторсодержащих горных породах, концентрация фтора превышает 1,5 мг/л и достигает иногда 12 мг/л. Именно это стало причиной эндемического флюороза в Бучакской биогеохимической провинции (Полтавская область Украины). Избыточное поступление фтора, который является сильным окислителем и вследствие этого, как и другие галогены, — протоплазматиче-ским ядом, приводит к инактивации ферментных систем одонтобластов — клеток, которые отвечают за процессы реминерализации зубов. В первой стадии флюороза наблюдаются фарфоро-, мелоподобные пятна на симметричных резцах, во второй — они пигментируются, окрашиваясь в желто-коричневый цвет. В третьей стадии появляются эрозии эмали, разрушается коронка зуба, становится неправильным прикус. При постоянном потреблении питьевой воды с высоким содержанием фтора может развиться даже флюороз скелета (генерализованный остеосклероз, оссификация связок, особенно межреберных, хрящей), что приводит к ограничению подвижности. При этом могут поражаться нервная система и внутренние органы (сердце, почки, печень и т. п.). Первые случаи водно-нитратной метгемоглобинемии у младенцев описал в 1945 г. Comli. У детей, находившихся на искусственном вскармливании обнаружили акроцианоз, одышку, тахикардию и другие признаки гипоксии. Эссенциальность фактора — это специфичность его участия в прямых метаболических процессах, необходимых для выживания данного организма и его потомства. ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ ВОДЫ Было установлено, что питательную смесь разводили водой с высоким содержанием нитратов. В 1949—1950 гг. случаи водно-нитратной метгемоглобине-мии описал Uolton в США. За этот период зарегистрировано 278 случаев болезни, из них 39 — смертельных. Со временем было доказано, что водно-нитратная метгемоглобинемия диагностирована, как правило, у детей раннего возраста при искусственном вскармливании питательными смесями, приготовленными на воде с высокой концентрацией нитратов (свыше 45 мг/л) и нитритов. Нитраты не относятся к метгемоглобинобразователям, однако поступая в пищеварительный канал с водой, они под воздействием кишечной микрофлоры восстанавливаются в нитриты. Последние поступают в кровь и блокируют гемоглобин путем образования метгемоглобина (MtHb), который не способен вступать в обратимую реакцию с кислородом и переносить его. Таким образом, чем больше гемоглобина превратилось в метгемоглобин, тем меньше кислородная емкость крови. Метгемоглобин в 300, а по некоторым данным, — в 500 раз, более стойкий по степени диссоциации в сравнении с оксигемогло-бином. Метгемоглобин, в отличие от оксигемоглобина, сам не диссоциирует. В случае его накопления снижается насыщение артериальной крови кислородом, развивается гемический тип гипоксии, возникает кислородное голодание. Если количество метгемоглобина превышает 50% общего количества гемоглобина, организм может погибнуть от гипоксии центральной нервной системы. Во всех упомянутых случаях, когда болели младенцы, взрослые остава В норме у детей старшего возраста и взрослых уровень метгемоглобина в крови не превышает 1—2%. При поступлении нитратов в организм взрослых в избыточных, однако не очень высоких дозах, концентрация метгемоглобина повышается незначительно, поскольку метгемоглобиновая редуктаза эритроцитов разрушает его. Это почти не сказывается на состоянии здоровья, однако у пациентов с анемией или сердечно-сосудистыми заболеваниями могут усилиться проявления гипоксии. В то же время при поступлении больших количеств нитратов и у взрослых может развиться острое отравление1. Допустимая суточная доза нитратов, по данным экспертов ВОЗ, составляет 5 мг на 1 кг массы тела, или 350 мг для человека с массой тела 70 кг. При концентрации нитратов в воде на уровне гигиенического норматива (45 мг/л) в течение суток с 3 л воды в организм человека может поступить 135 мг нитратов. Острое отравление у взрослых наблюдается при поступлении 1—4 г нитратов. Доза 8 г нитратов может привести к гибели человека, а доза 13—14 г является абсолютно смертельной. РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ У детей раннего возраста вследствие отсутствия метгемоглобинредуктазы происходит накопление метгемоглобина в крови, и когда его количество достигает 10%, появляются клинические признаки метгемоглобинемии: акроцианоз, одышка, тахикардия. При тяжелых формах заболевания (содержание метгемоглобина до 30%) развиваются судороги, дыхание Чейна—Стокса и наступает смерть. Очень тяжелая форма метгемоглобинемии развивается в случае, если концентрация метгемоглобина в крови достигает 30—40%. Однако повышенное содержание нитратов в воде опасно для здоровья не только детей, но и взрослых. Это связано с ролью нитратов в синтезе нитроз-аминов и нитрозамидов. Синтез происходит вследствие превращения нитратов в нитриты и взаимодействия последних с алифатическими и ароматическими аминами как в окружающей среде (в воде водоемов, почве, растениях), так и в организме человека (пищеварительном канале). Нитрозамидам и нит-розаминам (нитрозодиметиламин, нитрозодиэтиламин, нитрозодифениламин) свойственно мутагенное и канцерогенное действие. Большое количество возможных источников поступления нитрозаминов, нитрозамидов и их предшественников нитратов в водоемы хозяйственно-питьевого назначения, возможность их синтеза из нитратов в воде водоемов и пищеварительном канале, высокая растворимость и значительная стабильность делают питьевую воду одним из основных путей поступления нитрозамидов в организм человека. Поэтому повышенное содержание нитратов в воде способствует повышению онкологической заболеваемости населения. С составом питьевой воды часто связывают эндемию зоба — болезни, которая сопровождается увеличением щитовидной железы. Длительное время ее этиология оставалась неизвестной, хотя для лечения этой болезни издавна успешно применяли морские водоросли и соль. В средине XIX ст. французские врачи Прево и Шатен высказали мнение, что причиной развития эндемического зоба является дефицит йода в рационе населения, и предложили йодную профилактику. Они доказали, что эндемический зоб поражает население биогеохимических провинций, где наблюдается недостаточное количество йода во всех элементах биосферы — почве, воздухе, воде, растениях, организме домашних животных. Патогенез эндемического зоба, в основе которого лежат нарушения функции щитовидной железы вследствие дефицита йода, является сложным. Он тесно связан с нарушением синтеза тиреоидных гормонов, угнетением тиреотропной функции гипофиза и секреторной активности щитовидной железы. В тяжелых случаях и без лечения развивается симптомокомп-лекс, подобный гипотиреозу, с отставанием в физическом и умственном развитии, кретинизмом. Суточный баланс йода, по А.П. Виноградову, такой: 70 мкг должно поступать с пищей растительного происхождения, 40 мкг — с мясной пищей, 5 мкг — с воздухом, 5 мкг — с водой, т. е. в сумме 120 мкг/сут. На сегодня известно, что физиологическая суточная потребность в йоде несколько выше и составляет 150—200 мкг. Отмечена обратная корреляция между содержанием йода в воде источников, частотой и тяжестью течения болезни. Ой ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ ВОДЫ В то же время использование для питья воды с содержанием йода свыше 100 мкг/л может способствовать снижению уровня и даже ликвидации заболеваемости эндемическим зобом. Таким образом, низкое содержание йода в питьевой воде и продуктах питания является непосредственной причиной заболеваемости населения эндемическим зобом. Количество йода в местных пищевых продуктах коррелирует с его количеством в воде поверхностных и подземных источников водоснабжения. Вследствие этого низкая концентрация йода в воде становится своеобразным индикатором его уровня в объектах окружающей среды и сигналом возможности возникновения зобной эндемии. Кроме того, было доказано, что повышенная жесткость воды в эндемичных районах способствует развитию эндемического зоба, так как ухудшает всасывание йода в пищеварительном канале. Существенное влияние на возникновение в условиях недостатка йода эндемического зоба оказывает дисбаланс других макро- и микроэлементов. Установлено, что высокие концентрации кальция в воде в эндемичных по зобу регионах стимулируют, повышают функцию щитовидной железы, способствуя развитию наиболее тяжелой узловой, коллоидной формы эндемического зоба. Кроме того, малое количество калия в суточном рационе в условиях йодной недостаточности также способствует функциональному возбуждению щитовидной железы, но при этом развивается паренхиматозная форма эндемического зоба. Избыточное количество марганца способствует угнетению функции щитовидной железы, механизм которого состоит в блокировании ферментов, принимающих участие в превращении неорганического йода в органическую, но не активную форму — дийодтиронин. Кроме того, замедляется дальнейшая трансформация дийодтиронина в активную форму — тироксин. Кроме фтора и йода, еще некоторые микроэлементы в концентрациях, наблюдающихся в природной воде некоторых биогеохимических провинций, могут отрицательно влиять на здоровье. Например, в биогеохимических провинциях с повышенным содержанием стронция в воде глубоких подземных горизонтов, используемой для питья, у детей обнаружены нарушения развития костной ткани, в частности задержка прорезывания зубов, позднее закрытие родничков. Также замечено уменьшение удельного веса детей младшего школьного возраста с гармоничным морфофункциональным развитием. Патогенез указанных нарушений связан с известным в биохимии фактом конкурентных отношений стронция и кальция во время их распределения в организме, в частности в костной системе. Аналогичным является и патогенез эндемической уровской болезни, которая наблюдается у жителей Забайкалья и других районов Юго-Восточной Азии. В середине XIX ст. среди населения одного из городов Силезии появились массовые заболевания, получившие название "копытной" болезни в связи с характерными наростами на стопах. Со временем было диагностировано хроническое отравление мышьяком. Копытная болезнь возникала у людей вследствие длительного употребления артезианской воды, которая в процессе формирования водоносного горизонта контактировала с арсенопиритом и содержала мышьяк в концентрации 1—2,2 мг/л. _______ РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ ______ Гигиеническое значение техногенного загрязнения воды химическими веществами. Отдавая должное эндемическому значению воды, следует четко понимать, что сегодня еще более угрожающим здоровью людей является техногенное загрязнение водоемов химическими веществами вследствие сбрасывания неочищенных или недостаточно очищенных сточных вод промышленных предприятий, поверхностного стока с сельскохозяйственных угодий, территорий свалок промышленных отходов и т. п. Попадание в воду токсических веществ даже в небольших количествах может представлять опасность для здоровья отдельного человека и населения в целом, вплоть до возникновения массовых отравлений. Это обусловлено тем, что химические вещества, загрязняющие воду водоемов, не задерживаются современными очистными сооружениями водопроводных станций. Вероятность негативного воздействия повышается при загрязнении воды чрезвычайно токсичными и высокотоксичными веществами, обладающими мутагенной и канцерогенной активностью, эмбриотоксичностью и тератогеннос-тью, репродуктивной токсичностью и сенсибилизирующими свойствами. Кроме того, риск вредного влияния выше, если вещество плохо и медленно разрушается в воде вследствие как физико-химических процессов (гидролиза и фотолиза), так и микробиологической деструкции. Стойкими в водной среде являются тяжелые металлы, хлорорганические соединения (ДДТ, ГХЦГ, алдрин, дилдрин, полихлорированные бифенилы, дибензодиоксины и дибен-зофураны), нитрозамины и т. п. С другой стороны, в воде в результате деструкции под воздействием различных физических, химических и биологических факторов могут образоваться более токсичные и опасные продукты трансформации. Например, нитраты могут превращаться в нитрозамины и нитрозами-ды, являющиеся мутагенами и канцерогенами; ртуть неорганическая может трансформироваться в метилртуть, вызывающую болезнь Минаматы. Следует учесть и возможность комбинированного действия некоторых химических веществ при одновременном поступлении в организм с водой. Следствием этого чаще всего является суммация негативных эффектов, то есть аддитивное действие. Но вполне возможно и усиление эффекта, то есть потенцирование. Это свойственно тяжелым металлам, в частности свинцу и кадмию, полихлорированным диоксинам и дибензофуранам, хлорорганическим пестицидам ДДТ и ГХЦГ и т. п. Химические вещества, находящиеся в воде в незначительных концентрациях, которые в 1,5—2 раза превышают ПДК, можно считать факторами низкой интенсивности. Они при длительном хроническом поступлении с водой оказывают неспецифическое влияние, связанное с угнетением общей сопротивляемости организма к действиям других вредных факторов. Первые последствия такого действия — нарушение функций отдельных органов и систем с напряжением компенсаторно-приспособительных механизмов — можно выявить только во время углубленных медицинских осмотров с использованием лабо-раторно-инструментальных методов исследования. В дальнейшем может наблюдаться увеличение неспецифической заболеваемости сначала наиболее чувствительных групп (младенцев, детей в возрасте до 14 лет, беременных, людей ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ ВОДЫ пожилого возраста, больных с хронической соматической патологией), а впоследствии и всего населения. Иногда при значительных уровнях загрязнения воды наблюдается специфическое действие химических веществ — массовые хронические и острые отравления. Информация о случаях массовых заболеваний химической этиологии, обусловленных употреблением загрязненной воды и продуктов (в том числе морских), приведена в табл. 3. Влияние на здоровье людей органолептических свойств воды следует рассматривать с позиции учения И.П. Павлова о высшей нервной деятельности. Исходя из этого, запах, вкус и привкус, внешний вид, прозрачность, цвет воды, которые воспринимаются органами чувств человека, являются раздражителями, действующими посредством центральной нервной системы на весь его организм. Доказано, что ухудшение органолептических свойств воды оказывает рефлекторное действие на водно-питьевой режим и некоторые физиологические функции организма человека, в частности угнетает секреторную деятельность желудка. Исторический опыт свидетельствует о том, что плохие органолептические свойства воды сигнализируют о возможном вредном влиянии ее на здоровье. Инстинктивному стремлению к безопасности полностью отвечают эстетические представления, сформировавшиеся в процессе культурного развития человечества в целом и укрепляющиеся в процессе воспитания каждого человека с детства. Поэтому ясно, что у человека формируется защитная реакция на воду с плохими органолептическими свойствами — чувство отвращения, заставляющее отказываться от употребления такой воды, невзирая на жажду. Иначе говоря, органолептические свойства воды являются важным индикатором, влияющим на нервно-психическое состояние человека, и при определенных обстоятельствах могут привести не только к отказу от использования такой воды, но и к ухудшению здоровья. Хозяйственно-бытовое и народнохозяйственное значение воды. Гигиеническое значение воды не исчерпывается лишь ее физиологической ролью и непосредственным влиянием на здоровье населения. Большое ее количество расходуется на гигиенические, хозяйственно-бытовые и производственные нужды. Так, использование воды в достаточном количестве способствует формированию навыков личной гигиены. Чистая кожа лучше выполняет физиологические функции, а именно, обладая бактерицидными свойствами, становится надежным барьером на пути проникновения возбудителей многих инфекционных болезней. Воду широко используют для оздоровительных целей, во время проведения спортивных мероприятий, для гидротерапии в лечебно-профилактических учреждениях. Вода играет важную роль в создании оптимальных бытовых условий в жилых домах, общественных, в том числе лечебно-профилактических, учреждениях, на промышленных предприятиях. Ее используют для влажной уборки помещений, поддержания в чистоте предметов быта и ухода, стирки белья, приготовления пищи, мытья посуды и др. Воду используют для производственных нужд на всех без исключения промышленных предприятиях. Иногда технологические процессы предусматривают РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ ТАБЛИЦА 3 Хронические интоксикации, связанные с техногенным загрязнением воды химическими веществами в концентрациях, превышающих ПДК
ГИГИЕНИЧЕСКОЕ ЗНАЧЕНИЕ ВОДЫ Продолжение табл. 3
1 МАИР — Международное агентство по изучению рака. По классификации МАИР все химические вещества в зависимости от канцерогенного риска для человека разделены на 3 группы: I — имеются достаточные эпидемиологические доказательства канцерогенности вещества для человека; II (подгруппы 2А и 2Б) — имеются достаточные экспериментальные доказательства канцерогенности для теплокровных животных, что дает основание считать вещество возможным канцерогеном для человека; III — данных недостаточно, чтобы классифицировать вещество с точки зрения его канцерогенности для человека. РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ использование не просто водопроводной воды, а специально подготовленной: деминерализованной, деионизированной, умягченной, апирогенной воды. Строгие требования к качеству воды следует предъявлять в текстильной промышленности в процессе производства и крашения тканей, на фармацевтических предприятиях во время изготовления лекарственных средств, в пищевой промышленности при приготовлении продуктов питания и напитков, в атомной энергетике и т. п. В больших количествах ее используют в сельском хозяйстве (для орошения в растениеводстве и садоводстве, в теплицах, птицеводческих и животноводческих комплексах). Много водопроводной воды тратят на мытье улиц и орошение зеленых насаждений в пределах населенных пунктов. Обязателен так называемый пожарный запас воды. Таким образом, трудно переоценить значение воды для обеспечения жизнедеятельности человека, сохранения и укрепления здоровья населения, обеспечения высокой степени санитарного благоустройства населенных пунктов, создания санитарных условий для проживания и удовлетворения народнохозяйственных нужд общества. Научное обоснование гигиенических нормативов (стандартов) качества питьевой воды Положительную роль в сохранении и укреплении здоровья людей, в профилактике инфекционных и неинфекционных болезней, в создании надлежащих санитарно-бытовых условий вода может выполнять лишь при соответствии ее качества определенным требованиям. К каждому типу воды предъявляют определенные гигиенические требования. Имеются свои научно обоснованные гигиенические нормативы качества воды и правила контроля за их соблюдением. Создан и внедрен в практику соответствующий нормативный документ (государственный стандарт), которым должен руководствоваться врач, дающий гигиеническое заключение о качестве воды. Показатели качества воды, исходя из гигиенических требований, можно разделить на следущие группы: 1) органолептические показатели; 2) показатели безвредности по химическому составу; 3) показатели эпидемической безопасности. В последнее время в отдельные группы выделяют показатели радиационной безопасности и физиологической полноценности воды. Питьевая вода, непосредственно используемая населением, должна быть доброкачественной, то есть иметь хорошие органолептические свойства, быть безвредной по химическому, в том числе и радионуклидному, составу, эпидемически безопасной и физиологически полноценной. Водой с хорошими органолептическими свойствами врачи медико-профилактической специальности так же, как и большинство населения, считают такую, которая не имеет запаха, вкуса и привкуса, прозрачную, не окрашенную, не содержащую заметных на глаз примесей (пленок, осадка, взвешенных ве- ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ ществ и т. п.), прохладную. Такая вода не оказывает негативного влияния на нервно-психическое состояние человека, не приводит к отказу от нее и не вынуждает искать другие варианты для удовлетворения жажды. Безвредной по химическому составу является такая вода, употребление которой не приведет к возникновению неинфекционных заболеваний химической этиологии (эндемических заболеваний, техногенных хронических и острых отравлений и т. п.) у людей и их потомков. Это должно быть гарантировано и для самых чувствительных групп населения (новорожденных, детей, беременных, людей пожилого возраста и др.), и в условиях использования ее на протяжении всей жизни, и с учетом вероятности комбинированного действия химических веществ при одновременном наличии в воде. Кроме эндемических болезней и техногенных отравлений, должны быть предотвращены последствия неспецифического действия (возрастание общей заболеваемости вследствие снижения сопротивляемости организма) и отдаленные (мутагенные, канцерогенные, эмбриотоксические, тератогенные, гонадотоксические, сенсибилизирующие, нейротоксические и т. п.) эффекты. Исходя из этого, концентрация в воде опасных для здоровья химических веществ не должна превышать ПДК, установленных на основе глубоких санитарно-токсикологических исследований. В то же время питьевая вода должна быть физиологически полноценной, ее минеральный состав, содержание биомикроэлементов (фтора, йода, селена и т. п.) должны быть адекватными биологическим потребностям организма. Кроме того, вода должна быть безвредной в радиационном отношении, т. е. содержать безопасное количество природных радионуклидов и иметь такую суммарную объемную а- и Я-радиоактивность, которая не превышает гигиенического норматива1. Безопасной в эпидемическом отношении считается вода, которая не может служить фактором передачи возбудителей инфекционных заболеваний. То есть она не должна содержать опасных для здоровья человека патогенных и условно патогенных бактерий, вирусов, простейших, яиц гельминтов и т. п. Органолептические свойства воды — это те ее признаки, которые воспринимаются органами чувств человека и оцениваются по интенсивности восприятия. Обонятельные, вкусовые, зрительные, тепловые ощущения обусловлены физическими характеристиками воды и наличием в ней определенных химических веществ (органических, минеральных солей, газов). Именно они и придают воде запах, вкус, привкус, окраску, мутность и т. п. Поэтому органолептические свойства воды характеризуются показателями двух подгрупп: фи-зико-органолептическими, представляющими собой совокупность органолеп-тических признаков, воспринимаемых органами чувств, и химико-органолеп-тическими, свидетельствующими о содержании определенных химических веществ, способных раздражать соответствующие анализаторы и обусловливать то или иное ощущение. Нередко в подземных водах регистрируют повышенные концентрации радия, во время распада которого выделяется радон. Его а-излучение создает определенную опасность внутреннего облучения, в том числе во время принятия гигиенических процедур (ванны, душа и т. п.). РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ Часто отмечаются случаи, когда примеси в питьевой воде не являются непосредственной причиной болезни, однако оказывают опосредованное негативное воздействие на здоровье, ухудшая органолептические свойства воды. Осадок, непривычная окраска, запах и привкус издавна являлись признаками недоброкачественности воды, вызывали у человека отвращение и чувство возможной опасности для здоровья, заставляли искать другие источники водоснабжения, которые могли оказаться опасными в эпидемическом плане несмотря на хорошие органолептические свойства. Хорошие органолептические свойства воды положительно влияют на организм человека. Так, приятная на вкус вода повышает остроту зрения и частоту сердечных сокращений, неприятная — снижает. Нельзя не учитывать и эстетическое влияние органолептических свойств воды. Тут уместно вспомнить слова Ф.Ф. Эрисмана: "Было бы непростительной ошибкой считать удовлетворение такой эстетической потребности роскошью, поскольку тут эстетика и гигиена сливаются настолько, что разделить их практически не представляется возможным". Запах — способность имеющихся в воде химических веществ испаряться и, создавая давление пара над поверхностью воды, раздражать рецепторы слизистых оболочек носа и пазух, обусловливая соответствующие ощущения. По характеру различают природные (ароматический, болотный, гнилостный, рыбный, травяной и т. д.), специфические (аптечный) и неопределенные запахи. Однако для гигиенической оценки и сравнения качества воды недостаточно такой характеристики. Понятно, что один и тот же запах может иметь различную интенсивность. К тому же у разных людей неодинакова чувствительность анализатора обоняния. У некоторых она очень высока. Именно они могут чувствовать запах воды тогда, когда обычный человек его не воспринимает. Учитывая изложенное выше, для характеристики интенсивности запахов воды еще в 1914 г. в США предложили пятибалльную шкалу: 0 — запах не ощущается, его не выявляет даже опытный одоратор; 1 — не определяется потребителем, но обнаруживается опытным одоратором; 2 — слабый, обнаруживается потребителем только в том случае, если указать на него; 3 — заметный, обнаруживается потребителем и вызывает его неодобрение; 4 — отчетливый, обращающий на себя внимание и делающий воду не пригодной для питья; 5 — очень сильный, определяемый на расстоянии, вследствие чего вода не пригодна для употребления. С повышением температуры ухудшается растворимость в воде газов. К тому же увеличивается летучесть растворимых в воде органических веществ, что приводит к повышению давления их пара над поверхностью воды. Из-за этого единица объема воздуха содержит больше молекул вещества, и как следствие, в большей мере раздражаются рецепторы анализатора обоняния, т. е. запах усиливается. Кроме того, под влиянием высокой температуры в воде могут происходить химические превращения и появляться новые вещества с запахом. Поэтому запах воды оценивают как при комнатной температуре (20 °С), так и при ее нагревании до 60 °С. ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ Экспериментально в опытах на животных доказано, что изменение запаха воды рефлекторно воздействует на питьевой режим и физиологические функции организма. Особенно это касается неприятных запахов, которые обусловливают защитную условно-рефлекторную реакцию, заставляя отказываться от употребления такой воды. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.026 сек.) |