|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ЭЛЕКТРОКАРДИОГРАФИЯ И ВЕКТОРКАРДИОГРАФИЯ
Электрокардиография — регистрация суммарной электрической активности сердца с определенных участков тела. Электрокардиограмма (ЭКГ) — кривая, отражающая процесс возникновения, распространения и исчезновения возбуждения в различных отделах сердца. Поскольку ткани организма способны проводить электрическое поле во всех направлениях, удается с помощью усилителей зарегистрировать электрические явления на поверхности тела. ЭКГ отражает только изменения электрических потенциалов, но не сокращения миокарда. А. Возникновение электрического тока в сердце можно наблюдать, если на сокращающееся сердце крысы набросить нерв нервно-мышечного препарата лягушки: мышца начинает сокращаться в ритме сердца. Электрические потенциалы сердца можно зарегистрировать на его поверхности с помощью внеклеточных биполярных электродов. Представим сердце в виде мышечного полого однокамерного органа или полоски миокарда без проводящей системы (рис. 13.7). При невозбужденном состоянии миокарда записывается прямая линия (1), так как между отводящими электродами нет разности потенциалов. При нанесении раздражения (стрелка) вследствие возникновения возбуждения наружная поверхность полоски миокарда заряжается отрицательно, возникает разность потенциалов между электродами и регистрируется положительное отклонение (2, направлено вверх от изоэлектрической линии). При охвате возбуждением всей полоски миокарда между электродами разность потенциалов вновь отсутствует, писчик регистратора возвращается в исходное положение, на коротком участке записывается изо-электрическая линия (3). Затем в области верхнего электрода (позиция 4) начинается реполяризация, заряд клеток миокарда возвращается к исходному (изнутри отрицательный, снаружи положительный), вновь возникает разность потенциалов между электродами, регистрируется отклонение, но уже в обратном направлении — вниз от изоэлектрической линии (4). Далее процесс реполяриза-ции охватывает всю полоску (возбуждение закончено), разность потенциалов между электродами, естественно, исчезает, писчик возвращается к нулевой (изоэлектрической) линии (5). В связи с уменьшенной скоростью распространения процесса реполяризации по сравнению со скоростью распространения фронта деполяризации продолжительность отклонения писчика вниз дольше, а амплитуда его значительно меньше, чем отклонение вверх. Таким образом, записанная кривая весьма похожа на ЭКГ. Б. Дипольная концепция происхождения электрокардиограммы (ЭКГ) объясняет генез отдельных ее элементов. Каждое возбужденное волокно миокарда представляет собой диполь, вектор которого имеет определенную величину и направление — условно от отри- цательного полюса к положительному полюсу. Суть дипольной концепции, объясняющей происхождение элементов ЭКГ, заключается в том, что сердце рассматривается как единый диполь, создающий в окружающем его объемном проводнике (теле) электрическое поле. Вектор единого сердечного диполя (интегральный вектор) представляет собой алгебраическую сумму всех векторов единичных источников тока (кардиомиоцитов), существующих в данный момент, поэтому его называют также суммарным моментным вектором. Он, как и единичный, направлен от возбужденного участка миокарда к невозбужденному. Направление и величина интегрального дипольного вектора определяют направление и величину зубцов ЭКГ, эта величина зависит также от расстояния между регистрирующим электродом и источником тока (сердцем) и обратно пропорциональна квадрату этого расстояния. Дипольный вектор переднего фронта волны возбуждения называют вектором деполяризации, а вектор, направленный в обратную сторону, — вектором реполяризации. Диполь создает в окружающей его среде силовые линии, идущие от положительного заряда диполя к отрицательному. На границе между положительной и отрицательной половинами электрического поля располагается линия нулевого потенциала. Если суммировать все отдельные момент-ные векторы в течение всего периода деполяризации желудочков, предсердий или реполяризации желудочков, получим средний результирующий вектор. Средний результирующий вектор ^деполяризации желудочков обозначается AQRS, деполяризации предсердий — АР, реполяризации желудочков — AT. Средний результирующий вектор во время возбуждения желудочков направлен вниз и влево, поэтому изопотенциальные положительные линии находятся в этой же области, а отрицательные — вверху справа. Направление среднего результирующего вектора деполяризации желудочков примерно соответствует анатомической оси сердца. ЭКГ регистрируется с определенных участков тела с помощью различных отведений. ЭКГ-отведение — это вариант расположения электродов на теле при регистрации электрокардиограммы. Отведения могут быть монополярными, когда потенциал регистрируется в одной точке тела, и биполярными, когда регистрируется разность потенциалов между двумя точками тела — с помощью электродов различных систем отведения. Во всех случаях один электрод присоединяют к положительному полюсу гальванометра — это положительный (+), или активный электрод; второй электрод — к отрицательному полюсу гальванометра — это отрицательный (-), или нулевой электрод отведения. В. Существуют три основные системы отведения. 1. Стандартные биполярные отведения (по Эйнтховену): I отведение — левая рука (+) — правая рука (—); II отведение — правая рука (—) — левая нога (+); III отведение — левая рука (—) — левая нога (+) (рис. 13.8). 2. Грудные однополюсные отведения (по Вильсону): активный электрод (+) накладывают на различные точки грудной клетки спереди (отведение во фронтальной плоскости), а нулевой (—) электрод формируют путем объединения через сопротивления электродов от трех конечностей — двух рук и левой ноги (рис. 13.9). Расположение активного электрода при грудных отведениях следующее: V| — четвертое межреберье по правому краю грудины; V2 — четвертое межреберье по левому краю грудины; V3 — на четвертом ребре по левой пара- стернальной линии; V4 V5 пятое межреберье по левой средин- ноключичной линии; на той же горизонтали, что V4, но по левой передней подмышечной линии; на той же горизонтали, что V4 и V5, но по левой средней подмышечной линии. 3. Усиленные однополюсные отведения (по Гольдбергеру): aVR, aVL, aVF, что означает: а — augmented (усиленный); V — voltage (потенциал); R — right (правый) — правая рука; L — left (левый) — левая рука; F — foot (нога) — левая нога. При усиленных отведениях Гольдбергера регистрируют разность потенциалов между электродом, наложенным на одну из конечностей (+) (например, на левую руку для отведения aVL), и нулевым (—) электродом, представляющим собой объединенный электрод от двух других конечностей. С помощью отведения от конечностей потенциалы сердца регистрируют в основном во фронтальной плоскости, с помощью грудных отведений — преимущественно в горизонтальной плоскости. В зависимости от расположения электродов, с помощью которых регистрируют ЭКГ, формируется определенное направление оси отведения (условная линия, соединяющая два электрода данного ЭКГ-отведения). Если соединить условными линиями электроды первого, второго и третьего стандартных отведений, то получится равносторонний треугольник, образованный осями стандартных отведений (треугольник Эйнт-ховена; стандартные отведения он предложил в 1913 г.). Треугольник направлен вершиной вниз, каждый его угол равен 60°. Однако при биполярных отведениях по Эйнтховену конечности играют роль только проводников, и поэтому точки, от которых отводятся потенциалы, фактически расположены в месте соединения конечностей с туловищем. Таких точек три, они лежат в вершинах почти равностороннего треугольника, стороны которого и представляют собой оси отведения. Проекция среднего результирующего вектора деполяризации желудочков на стороны треугольников (оси отведения) отражает относительную величину зубца R — она наибольшая во II отведении (средний результирующий вектор деполяризации желудочков расположен практически параллельно оси II отведения), наименьшая — в III отведении. Это правило проекции относится и ко всем другим зубцам ЭКГ. Перпендикуляры, проведенные из центра треугольника Эйнтховена (из центра единого сердечного диполя) к оси каждого стандартного отведения, делят ее на две равные части: положительную, обращенную в сторону положительного (активного) электрода (+) отведения, и отрицательную, обращенную к отрицательному электроду (—). Если вектор сердечного диполя в данный момент возбуждения сердца проецируется на положительную часть оси отведения (положительная полуось), на ЭКГ записывается положительное отклонение — вверх от изолинии. Если же вектор сердечного диполя проецируется на отрицательную часть оси отведения (отрицательная полуось), на ЭКГ регистрируется отклонение вниз от изолинии (отрицательный зубец ЭКГ). Используя шестиосевую систему координат, можно легко определить графическим способом направление электрической оси сердца — это проекция среднего результирующего вектора деполяризации желудочков (AQRS) на фронтальную плоскость. Для этой цели алгебраическую сумму зубцов QRS (в мм) I и III стандартных отведений откладывают на их положительные полуоси, из концов отрезков восстанавливают перпендикуляры, точку пересечения которых соединяют с центром треугольника Эйнтховена — данная линия есть электрическая ось сердца. Ее направление оценивается углом а (это угол, заключенный между электрической осью сердца и положительной полуосью I стандартного отведения). В норме он колеблется от 0 до +90°. При этом у здорового человека различают три положения электрической оси сердца: горизонтальное (угол = 0—29°), нормальное (угол = 30—69°) и вертикальное (угол = 70—90°). Отклонения электрической оси вправо — правограмма (+90° < а < +180°) или отклонение ее влево — левограмма (-90° < а < 0°), как правило, свидетельствуют о патологическом процессе. В норме направление электрической оси сердца совпадает с анатомической осью сердца — это линия, соединяющая середину основания сердца с его верхушкой. Однако электрическая ось сердца (правильнее средний результирующий вектор деполяризации желудочков) примерно совпадает с анатомической лишь в том случае, если распространение возбуждения не нарушено. Г. Элементы ЭКГ и их параметры. ЭКГ любого отведения содержит зубцы, сегменты и интервалы (рис. 13.10). Зубец ЭКГ — отклонение кривой от изолинии вверх или вниз. Причиной отклонения является наличие разности потенциалов между отводящими электродами. Сегмент ЭКГ — отрезок кривой ЭКГ, не содержащий зубца (участок изолинии). Изолиния регистрируется, когда нет разности потенциалов между отводящими электродами: либо сердце не возбуждено, либо все отделы предсердий или желудочков охвачены возбуждением. ЭКГ содержит два сегмента — PQ и ST (зубец S может отсутствовать, в этом случае начало сегмента — от конца зубца R). Интервалы ЭКГ — отрезки кривой ЭКГ, состоящие из сегмента и прилежащих к нему зубцов. В одном цикле возбуждения сердца различают три интервала ЭКГ: Р— Q, состоящий из зубца Р и сегмента PQ; интервал Q— Т, включающий весь желудочковый комплекс QRST вместе с сегментом ST; интервал S— Т, включающий сегмент ST и зубец Т. Зубец Р отражает процесс деполяризации (распространения возбуждения) и быстрой начальной реполяризации правого и левого предсердий. Амплитуда зубцов Р в различных отведениях колеблется в пределах 0,15—0,25 мВ (1,5—2,5 мм), длительность — 0,1 с. Сегмент PQ отражает период полного охвата возбуждением предсердий, в результате чего нет разности потенциалов между его участками, распространение возбуждения по атриовентрикулярному узлу (атриовентрику-лярная задержка), пучку Гиса и его разветвлениям. Его продолжительность 0,04—0,1 с. Реполяризация предсердий в основном не регистрируется, так как она совпадает с деполяризацией желудочков и поглощается комплексом QRS. Интервал Р— Q отражает процесс распространения возбуждения по предсердиям и полный охват их возбуждением, распространение возбуждения по атриовентрикулярному узлу, пучку Гиса, его ножкам и волокнам Пуркинье. Его продолжительность 0,12—0,20 с; с увеличением частоты сердечных сокращений продолжительность уменьшается. Увеличение этого интервала свидетельствует о замедлении проведения возбуждения в атриовентрикулярном узле или пучке Гиса. Желудочковый комплекс QRST отражает процесс распространения возбуждения по желудочкам (комплекс QRS), полного охвата их возбуждением (сегмент RST, чаше ST) и реполяризации желудочков (зубец Т). Зубец Q в большинстве отведений обусловлен начальным моментным вектором деполяризации межжелудочковой перегородки, возбуждение к которой передается с ножек пучка Гиса. Величина зубца во всех отведениях, кроме aVR, в норме не превышает '/4 амплитуды зубца R в том же отведении, а продолжительность — 0,03 с. Зубец R отражает процесс распространения возбуждения по миокарду правого и левого желудочков, от эндокарда к эпикарду. Величина зубца R в отведениях от конечностей обычно не превышает 2 мВ (20 мм), а в грудных — 2,5 мВ (25 мм). Зубец S отражает процесс распространения возбуждения в базальных отделах межжелудочковой перегородки. Его амплитуда весьма вариабельна и не превышает 2,0 мВ (20 мм), иногда он совсем отсутствует. Максимальная продолжительность комплекса QRS не превышает 0,1 с (чаще она равна 0,07—0,09 с), удлинение этого комплекса служит одним из признаков нарушения внутрижелудочкового проведения возбуждения. Сегмент RST (S—T) — отрезок ЭКГ от конца комплекса QRS до начала зубца Т, отражающий период полного охвата возбуждением желудочков (плато ПД кардиомиоци-тов), поэтому разность потенциалов в различных точках желудочков отсутствует, регистрируется изолиния, продолжительность ST— около 0,12 с. Смещение сегмента вверх или вниз в отведениях от конечностей не превышает 0,05 мВ (0,5 мм), в грудных — 0,2 мВ (2 мм). Зубец Т отражает процесс быстрой конечной реполяризации миокарда желудочков. Наибольшему зубцу R соответствует наибольшая величина зубца Т. Амплитуда зубца Т в отведениях от конечностей не превышает 0,5—0,6 мВ (5—6 мм), а в грудных отведениях — 1,5—1,7 мВ (15—17 мм), продолжительность — 0,12—0,20 с. Направления зубцов Т и R чаще совпадают, хотя эти зубцы отражают разные процессы. Зубец U, положительный по направлению, небольшой по амплитуде, регистрируется иногда после зубца Т, особенно в правых грудных отведениях (V,—V2). Происхождение его неясно. Интервал Q— Т — это отрезок ЭКГ от начала комплекса QRS до конца зубца Т. Этот интервал называют электрической систолой, по времени она почти совпадает с механической систолой желудочков. Продолжительность интервала Q— Т определяется по формуле Базетта: Q- T= - R, где К — коэффициент, равный 0,37 для мужчин, 0,40 — для женщин; R — R — длительность одного сердечного цикла в секундах. Таким образом, длительность интервала Q—T весьма вариабельна и зависит от частоты сердечных сокращений. При частоте сокращений 75 в 1 мин его продолжительность 0,33 с, при частоте 180—0,2 с. Электрическая диастола желудочков — это совокупность элементов ЭКГ от конца зубца Т до начала зубца Q следующего комплекса ЭКГ, практически совпадающая с механической диастолой и покоем желудочков. Интервал R — R соответствует расстоянию между вершинами двух зубцов R, по времени он равен длительности одного сер- дечного цикла. Чем больше частота сердечных сокращений, тем короче это время. Этот интервал дает возможность определить частоту кардиоциклов, наличие или отсутствие аритмии в сердечной деятельности (интервалы R—R неодинаковы, когда различия превышают 10 % средней их величины). Соотношения величин зубцов ЭКГ в норме следующие: Q:R = 1:4; P:T:R — 1:3:9. Таким образом, различные параметры ЭКГ дают разностороннюю информацию о состоянии сердца и широко используются в клинической практике. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |