АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ФУНКЦИОНАЛЬНАЯ КЛАССИФИКАЦИЯ СОСУДОВ

Читайте также:
  1. I. Назначение, классификация, устройство и принцип действия машины.
  2. I. Определение, классификация и свойства эмульсий
  3. I. Определения понятий. Классификация желтух.
  4. II. Классификация С/А в зависимости от способности всасываться в кровь и длительности действия.
  5. III Окклюзирующие заболевания магистральных сосудов
  6. V.2 Классификация банковских кредитов
  7. VI. ЕДИНАЯ ВСЕРОСИИЙСКАЯ СПОРТИВНАЯ КЛАССИФИКАЦИЯ ТУРИСТСКИХ МАРШРУТОВ (ЕВСКТМ) (КАТЕГОРИРОВАНИЕ МАРШУТА И ЕГО ОПРЕДЕЛЯЮЩИХ ПРЕПЯТСТВИЙ (ФАКТОРОВ)
  8. Акты официального толкования норм права: понятие, признаки, классификация.
  9. Акты применения норм права: понятие, классификация, эффектив-ность действия. Соотношение нормативно-правовых и правоприменительных актов.
  10. Алюминий. Классификация сплавов на основе алюминия, маркировка
  11. Ангионевротическая - первоначально развивается ангионевроз сосудов с ишемическим повреждением тканей отростка, а затем инфицирование и развитие воспаления.
  12. Аномалии отхождения основных сосудов

1. Амортизирующие сосуды аорта, легочная артерия и их крупные ветви, т.е. сосуды элас­тического типа.

Специфическая функция этих сосудов — поддержание движущей силы кровотока в диастолу желудочков сердца. Здесь сглажива­ется перепад давления между систолой, диа­столой и покоем желудочков за счет эласти­ческих свойств стенки сосудов. В результате в период покоя давление в аорте поддержива­ется на уровне 80 мм рт.ст., что стабилизиру­ет движущую силу, при этом эластические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непрерывность тока крови и давление по ходу сосудистого русла. Эластичность аорты и легочной артерии смягчает также гидравлический удар крови во время систолы желудочков. Изгиб аорты повышает эффективность перемешивания крови (основное перемешивание, создание однородности транспортной среды происхо­дят в сердце).

2. Сосуды распределения средние и мел­кие артерии мышечного типа регионов и ор­ганов; их функция — распределение потока крови по всем органам и тканям организма.

Вклад этих сосудов в общее сосудистое со­противление небольшой и составляет 10— 20 %. При увеличении запроса ткани диаметр сосуда подстраивается к повышенному кро­вотоку в соответствии с изменением линей­ной скорости за счет эндотелийзависимого механизма. При увеличении скорости сдвига пристеночного слоя крови апикальная мем­брана эндотелиоцитов деформируется, и они синтезируют оксид азота (NO), который сни­жает тонус гладких мышц сосуда, т.е. сосуд расширяется. Изменения сопротивления и пропускной способности этих сосудов моду­лируются нервной системой. Например, сни­жение активности симпатических волокон, иннервирующих позвоночные и внутренние сонные артерии, увеличивает мозговой кро­воток на 30 %, а активация снижает кровоток на 20 %. По-видимому, в ряде случаев сосуды распределения могут стать лимитирующим звеном, препятствующим значительному уве­личению кровотока в органе, несмотря на его метаболический запрос, например коронар­ные и мозговые сосуды, пораженные атеро­склерозом. Предполагают, что нарушение эндотелийзависимого механизма, регулирую­щего соответствие между линейной скорос­тью кровотока и тонусом сосудов, в частнос­ти, в артериях ног может служить причиной развития гипоксии в мышцах нижних конеч­ностей при нагрузках у лиц с облитерирую-щим эндартериитом.

3. Сосуды сопротивления. К ним относят артерии диаметром менее 100 мкм, артерио-лы, прекапиллярные сфинктеры, сфинктеры магистральных капилляров. На долю этих со­судов приходится около 50—60 % общего со­противления кровотоку, с чем и связано их название. Сосуды сопротивления определяют кровоток системного, регионального и мик-роциркуляторного уровней. Суммарное со­противление сосудов разных регионов фор­мирует системное диастолическое артериаль­ное давление, изменяет его и удерживает на определенном уровне в результате общих нейрогенных и гуморальных изменений то­нуса этих сосудов. Разнонаправленные изме­нения тонуса сосудов сопротивления разных регионов обеспечивают перераспределение объемного кровотока между регионами. В ре­гионе или органе они перераспределяют кро­воток между работающими и неработающи­ми микрорегионами, т.е. управляют микро­циркуляцией. Наконец, сосуды сопротивле­ния микрорегиона распределяют кровоток между обменной и шунтовой цепями, опре­деляют количество функционирующих ка­пилляров. Так, включение в работу одной ар-

териолы обеспечивает кровоток в 100 капил­лярах.

4. Обменные сосуды — капилляры. Частич­но транспорт веществ происходит также в ар-териолах и венулах. Через стенку артериол легко диффундирует кислород (в частности, этот путь играет важную роль в снабжении кислородом нейронов мозга), а через люки венул (межклеточные поры диаметром 10— 20 нм) осуществляется диффузия из крови белковых молекул, которые в дальнейшем попадают в лимфу.

Гистологически, по строению стенки, вы­деляют три типа капилляров.

Сплошные (соматические) капилляры. Эн-дотелиоциты их лежат на базальной мембра­не, плотно прилегая друг к другу, межклеточ­ные щели между ними имеют ширину 4— 5 нм (межэндотелиальные поры). Через поры такого диаметра проходят вода, водораство­римые неорганические и низкомолекулярные органические вещества (ионы, глюкоза, мо­чевина), а для более крупных водораствори­мых молекул стенка капилляров является ба­рьером (гистогематическим, гематоэнцефа-лическим). Этот тип капилляров представлен в скелетных мышцах, коже, легких, цент­ральной нервной системе.

Окончатые (висцеральные) капилляры. От сплошных капилляров отличаются тем, что в эндотелиоцитах есть фенестры (окна) диа­метром 20—40 нм и более, образованные в результате слияния апикальной и базальной фосфолипидных мембран. Через фенестры могут проходить крупные органические мо­лекулы и белки, необходимые для деятель­ности клеток или образующиеся в результате нее. Капилляры этого типа находятся в сли­зистой оболочке желудочно-кишечного трак­та, в почках, железах внутренней и внешней секреции.

Несплошные (синусоидные) капилляры. У них нет базальной мембраны, а межклеточные поры имеют диаметр до 10—15 нм. Такие ка­пилляры имеются в печени, селезенке, крас­ном костном мозге; они хорошо проницаемы для любых веществ и даже для форменных элементов крови, что связано с функцией со­ответствующих органов.

5. Шунтирующие сосуды. К ним относят артериоловенулярные анастомозы. Их функ­ции — шунтирование кровотока. Истинные анатомические шунты (артериоловенуляр­ные анастомозы) есть не во всех органах. Наиболее типичны эти шунты для кожи: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекраща­ется и кровь (тепло) сбрасывается по шун-

там из артериальной системы в венозную. В других тканях функцию шунтов при опре­деленных условиях могут выполнять маги­стральные капилляры и даже истинные ка­пилляры (функциональное шунтирование). В этом случае также уменьшается транска­пиллярный поток тепла, воды, других ве­ществ и увеличивается транзитный перенос в венозную систему. В основе функциональ­ного шунтирования лежит несоответствие между скоростями конвективного и транска­пиллярного потоков веществ. Например, в случае повышения линейной скорости кро­вотока в капиллярах некоторые вещества могут не успеть продиффундировать через стенку капилляра и с потоком крови сбра­сываются в венозное русло; прежде всего это касается водорастворимых веществ, осо­бенно медленно диффундирующих. Кисло­род также может шунтироваться при высо­кой линейной скорости кровотока в корот­ких капиллярах.

6. Емкостные (аккумулирующие) сосуды это посткапиллярные венулы, венулы, мел­кие вены, венозные сплетения и специализи­рованные образования — синусоиды селезен­ки. Их общая емкость составляет около 50 % всего объема крови, содержащейся в сердеч­но-сосудистой системе. Функции этих сосу­дов связаны со способностью изменять свою емкость, что обусловлено рядом морфологи­ческих и функциональных особенностей ем­костных сосудов. Посткапиллярные венулы образуются при объединении нескольких ка­пилляров, диаметр их около 20 мкм, они в свою очередь объединяются в венулы диамет­ром 40—50 мкм. Венулы и вены широко анастомозируют друг с другом, образуя ве­нозные сети большой емкости. Емкость их может меняться пассивно под давлением крови в результате высокой растяжимости венозных сосудов и активно, под влиянием сокращения гладких мышц, которые имеют­ся в венулах диаметром 40—50 мкм, а в более крупных сосудах образуют непрерывный слой.

В замкнутой сосудистой системе измене­ние емкости одного отдела влияет на объем крови в другом, поэтому изменения емкости вен влияют на распределение крови во всей системе кровообращения, в отдельных регио­нах и микрорегионах. Емкостные сосуды ре­гулируют наполнение («заправку») сердечно­го насоса, а следовательно, и сердечный вы­брос. Они демпфируют резкие изменения объема крови, направляемой в полые вены, например, при ортоклиностатических пере­мещениях человека, осуществляют времен-

ное (за счет снижения скорости кровотока в емкостных сосудах региона) или длительное (синусоиды селезенки) депонирование кро­ви, регулируют линейную скорость органно­го кровотока и давление крови в капиллярах микрорегионов, т.е. влияют на процессы диффузии и фильтрации.

Венулы и вены богато иннервированы симпатическими волокнами. Перерезка нер­вов или блокада адренорецепторов приводят к расширению вен, что может существенно увеличить площадь поперечного сечения, а значит и емкость венозного русла, которая может возрастать на 20 %. Эти изменения свидетельствуют о наличии нейрогенного то­нуса емкостных сосудов. При стимулирова­нии адренергических нервов из емкостных сосудов изгоняется до 30 % объема крови, со­держащейся в них, емкость вен уменьшается. Пассивные изменения емкости вен могут возникать при сдвигах трансмурального дав­ления, например, в скелетных мышцах после интенсивной работы, в результате снижения тонуса мышц и отсутствия их ритмической деятельности; при переходе из положения лежа в положение стоя под влиянием грави­тационного фактора (при этом увеличивается емкость венозных сосудов ног и брюшной полости, что может сопровождаться падени­ем системного АД).

Временное депонирование связано с пере­распределением крови между емкостными сосудами и сосудами сопротивления в пользу емкостных и снижением линейной скорости циркуляции. В состоянии покоя до 50 % объема крови функционально выключено из кровообращения: в венах подсосочкового сплетения кожи может находиться до 1 л крови, в печеночных — 1 л, в легочных — 0,5 л. Длительное депонирование — это депо­нирование крови в селезенке в результате функционирования специализированных об­разований — синусоидов (истинных депо), в которых кровь может задерживаться на дли­тельное время и по мере необходимости вы­брасываться в кровоток.

7. Сосуды возврата крови в сердце это средние, крупные и полые вены, выполняю­щие роль коллекторов, через которые обеспе­чиваются региональный отток крови, возврат ее к сердцу. Емкость этого отдела венозного русла составляет около 18 % и в физиологи­ческих условиях изменяется мало (на величи­ну менее '/5 от исходной емкости). Вены, особенно поверхностные, могут увеличивать объем содержащейся в них крови за счет спо­собности стенок к растяжению при повыше­нии трансмурального давления.


ОСНОВНЫЕ ПАРАМЕТРЫ СЕРДЕЧНО­СОСУДИСТОЙ СИСТЕМЫ

А. Поперечное сечение сосудов. Наименьшую площадь поперечного сечения всего крове­носного русла имеет аорта — 3—4 см2 (табл. 13.1).

Суммарное поперечное сечение ветвей аорты значительно больше, а так как каждая артерия дихотомически делится, то дисталь-ные отделы артериального русла имеют все большую и большую суммарную площадь се­чения. Самая большая площадь у капилля­ров: в большом круге кровообращения она составляет в покое 3000 см2. Затем, по мере слияния венул и вен в более крупные сосуды суммарное поперечное сечение уменьшается, и у полых вен оно примерно в 2 раза больше, чем в аорте, — 6—8 см2.

Б. Объем крови в кровеносной системе. У взрослого человека примерно 84 % всей крови содержится в большом круге крово­обращения, 9 % — в малом, 7 % — в сердце (в конце обшей паузы сердца; подробнее см. табл. 13.2).

В. Объемная скорость кровотока в сердеч­но-сосудистой системе составляет 4—6 л/мин, она распределяется по регионам и органам в зависимости от интенсивности их метаболиз­ма в состоянии функционального покоя и при деятельности (при активном состоянии тканей кровоток в них может возрастать в 2— 20 раз). На 100 г ткани объем кровотока в покое равен в мозге 55, в сердце — 80, в пе­чени — 85, в почках — 400, в скелетных мышцах — 3 мл/мин.

Наиболее распространенные методы изме­рения объемной скорости кровотока у чело­века — окклюзионная плетизмография и рео-графия. Окклюзионная плетизмография осно­вана на регистрации увеличения объема сег­мента конечности (или органа — у живот­ных) в ответ на прекращение венозного отто­ка при сохранении артериального притока крови в орган. Это достигается сдавливанием

сосудов с помощью манжеты, например на­ложенной на плечо, и накачиванием в ман­жету воздуха под давлением выше венозного, но ниже артериального. Конечность помеща­ется в камеру, заполненную жидкостью (пле­тизмограф), обеспечивающей регистрацию прироста ее объема (используются также воз­душные герметически закрытые камеры). Реография (реоплетизмография) — регистра­ция изменений сопротивления электрическо­му току, пропускаемому через ткань; это со­противление обратно пропорционально кро­венаполнению ткани или органа. Использу­ются также флоуметрия, основанная на раз­ных физических принципах, и индикаторные методы. Например, при электромагнитной расходометрии датчик флоуметра плотно на­кладывают на исследуемый артериальный сосуд и осуществляют непрерывную реги­страцию кровотока, основанную на явлении электромагнитной индукции. При этом дви­жущаяся по сосуду кровь выполняет функ­цию сердечника электромагнита, генерируя напряжение, которое снимается электродами датчика. При использовании индикаторного метода в артерию региона или органа быстро вводят известное количество индикатора, не способного диффундировать в ткани (краси­тели или радиоизотопы, фиксированные на белках крови), а в венозной крови через рав­ные промежутки времени в течение 1-й ми­нуты после введения индикатора определяют его концентрацию, по которой строят кри­вую разведения, а затем рассчитывают объем кровотока. Индикаторные методы с исполь­зованием различных радиоизотопов приме­няются в практической медицине для опре­деления объемного кровотока в мозге, по­чках, печени, миокарде человека.

Г. Линейная скорость кровотока это путь, проходимый в единицу времени части­цей крови в сосуде. Линейная скорость в сосу­дах разного типа различна (табл. 13.2; рис. 13.19) и зависит от объемной скорости крово­тока и площади поперечного сечения сосудов.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)