АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Модель парной регрессии

Читайте также:
  1. C) екі факторлы модель
  2. GAP модель: (модель разрывов)
  3. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  4. Автокорреляция в остатках. Модель Дарбина – Уотсона
  5. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  6. Автономні інвестиції. Чинники автономних інвестицій: технічний прогрес, рівень забезпеченості основним капіталом, податки на підприємців, ділові очікування. Модель акселератора.
  7. Аддитивная модель временного ряда
  8. Академіна модель освіти
  9. Алгоритм проверки адекватности парной регрессионной модели.
  10. Алгоритм проверки адекватности парной регрессионной модели.
  11. Американская модель
  12. Американская модель управления.

Модели в эконометрике.

Эконометрика — наука, изучающая количественные и качественные экономические взаимосвязи с помощью математических и статистических методов и моделей.

Модели эконометрики:

Модели временных рядов

Для решения задач эк-ки существенным является использование матем. моделей. Они широко применяются в бизнесе, экономике, общ. науках, политич. процессах.
Выделяют 3 соновн. класса моделей, к. применяются для анализа и прогноза.
1. Модель тренда (тенденция, развитие)
Y(t)= T(t) + E(t)
Где T(t)-временной тренд заданного параметрич. вида
E(t)-случайная компонента
2. Модель сезонности
Y(t)= S(t) + E(t)
Где S(t)-сезонная компонента
3.Модель тренда и сезонности:
А) аудитивная
Y(t)= T(t) + E(t) +S(t)
Б) мультипликативная
Y(t)= T(t)´ E(t)´S(t)
К моделям временных рядов относится множество более сложных моделей, таких как модели адаптивного прогноза, модели авторегрессии, скользящей средней и т. д. Их общей чертой яв-ся то, что они объясн-т поведение временного ряда, исходя из его предыдущих значений.
2. регрессионные модели с одним уравнением
В таких моделях зависимая (объясняемая) величина y представлена в виде функции:
F(x,b)=F(x1,x2,... xк;b1,b2,…bк),Где х1- хк – независимая переменные,b1 - bк - параметры уравнения (коэффициенты)
В зависимости от вида функции модели делятся на линейные и нелинейные. Область применения таких моделей значительно шире, чем моделей времен. рядов.
3. системы одновременных уравнений Системы одновременных моделей. Эти модели описываются системами уравнений. Системы могут состоять из тождеств и регрессионных уравнений, каждое из которых может кроме объясн-х переменных включать в себя такие объясняемые переменные из др. уравнений системы, т. е. набор объясняемых переменных связан. между собой через уравнения систем. Данные модели исп-ся для характеристики страховой эк-ки.

Пусть Qts – предложение товара в данный момент времени t, QtD – спрос на товар в данный момент времени t, pt – цена товара в момент времени t, уt – доход в момент времени t. Тогда система уравнений «спрос-предложение» будет иметь сл. вид:
Qts = а1+ а2´рt + а3´рt-1+ Et
QtD = b1 + b2´ рt +b3´Yt +Et
Qts=QtD
Т.О., в данной модели предопред-ми переменными явл-ся доход и цена, а спрос и предложение яв-ся объясняемыми переменными.

Модель парной регрессии.

Парная регрессия

Построение модели парной регрессия (или однофакторная модель) заключается в нахождении уравнения связи двух показателей у и х, т.е. определяется как повиляет изменение одного показателя на другой.

В задачах по эконометрике основным этапом является нахождение параметров модели и оценке их качества. Уравнение модели парной регрессии можно записать в общем виде:

где у - зависимый показатель (результативный признак);

х - независимый, объясняющий фактор.

Линейные и нелинейные модели регрессии

Уравнение линейной регрессии: у = а + bx

Уравнения нелинейной регрессии

полиномиальная функция

гиперболическая функция

степенная модель

показательная модель

экспоненциальная модель

Определение параметров в моделях парной регрессии

Нахождение модели парной регрессии в эконометрике сводится к оценке уравнения в целом и по параметрам (a, b). Для оценки параметров однофакторной линейной модели используют метод наименьших квадратов (МНК). В МНК получается, что сумма квадратов отклонений фактических значений показателя у от теоретических ух минимальна

Сущность нелинейных уравнений, которые находятся в том случае, если нет линейных моделей, заключается в приведении их к линейному виду и как при линейных уравнениях решается система относительно коэффициентов a и b.

Для нахождения коэффициентов a и b в уравнении модели парной регрессии можно использовать формулы.


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)