|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Организация данной работыВ главе 2 мы обеспечим необходимый базис, в общих чертах характеризующий LDPC коды, алгоритмы их декодирования и существующие методы анализа этих алгоритмов декодирования. В главе 3 мы изучаем LDPC декодирование с использованием алгоритмов двоичной передачи сообщений. Мы отслеживаем сообщение об ошибочной скорости, чтобы проанализировать декодер и предоставить EXIT диаграммы, основанные на сообщениях об ошибочной скорости. Также доказано, что алгоритм В Галлагера является возможно лучшим бинарным алгоритмом передачи сообщений. Мы используем EXIT диаграммы для разработки неравномерных LDPC кодов и, для того чтобы показать, что процесс проектирования может быть позиционирован в качестве линейного программирования. В главе 4 мы продолжим анализ главы 3. Опять же, мы используем EXIT диаграммы, основанные на сообщениях об ошибочной скорости, и покажем, как могут быть получены точные EXIT диаграммы. В то время как предыдущие работы по анализу LDPC кодов в AWGN каналах использовали наработки Гаусса для сообщений [24], мы избегаем предположений Гаусса о выходах проверочных узлов, которые на самом деле являются плохими предположениями. Мы называем наш метод «наполовину Гаусса», в отличие от «полного» метода Гаусса, который принимает все гауссовы сообщения. Мы показываем, что очень точный анализ и проектирование LDPC кодов можно осуществить с помощью приближения метода Гаусса. Опять же, мы используем EXIT диаграммы, чтобы уменьшить методику расчета неравномерных LDPC кодов до линейного программирования. Мы также предлагаем несколько рекомендаций по проектированию этих кодов. По сравнению с кодами, спроектированными с помощью анализа плотности эволюции, наши коды выполнены всего лишь на несколько сотых долей дБ хуже. В главе 5 мы рассмотрим класс алгоритмов декодирования, для которых анализ EXIT диаграмм декодера является точным (или имеет хорошее приближение). Мы рассматриваем общий случай проектирования кодов для желаемого поведения конвергенции и обеспечиваем необходимые и достаточные условия, для того чтобы были удовлетворены EXIT диаграммы максимальной скорости LDPC кодов. Наши результаты обобщают некоторые из существующих результатов ВЕС. В главе 6 мы применяем неравномерные LDPC коды для разработки многоуровневых схем кодирования с последующим их применением в дискретных мульти тональных системах (DMT). Мы используем комбинированную маркировку Грея / Ангербёка для QAM. Биты, маркированные по Грею, защищены, благодаря неравномерным LDPC кодам, в то время как другие биты защищаются с помощью высокой скорости кода Рида-Соломона с жёстким решением декодирования (или остаются не кодированными). Скорость LDPC кодов выбирается на основе анализа пропускной способности канала. Затем мы применяем эту схему кодирования для ансамбля частотно-селективных каналов с гауссовым шумом. Эта схема кодирования обеспечивает среднее эффективное кодирование с приростом более чем на 7,5 дБ при вероятности ошибки , которая представляет собой разрыв в размере примерно 2,3 дБ от предела Шеннона AWGN канала. Этот интервал может быть уменьшен до 0,8-1,2 дБ. В главе 7 мы рассматриваем декодирование методом переключения передач, в котором итерационный декодер может выбирать правила декодирования среди групп алгоритмов декодирования на каждой итерации. Сначала покажем, что при правильном выборе алгоритма на каждой итерации задержка декодирования может существенно снижаться. Мы покажем, что задача нахождения декодера с оптимальным переключением передач (минимальной задержкой декодирования) может быть позиционирована в качестве динамической программы. Затем мы предложим конструкцию трубопровода и оптимизацию переключения передач декодера для достижения минимальной стоимости оборудования вместо минимальной задержки. В главе 8 мы предоставим краткий обзор данной работы и некоторые предложения для будущих работ.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |