|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Расчет параметров трендаИмеются помесячные данные о темпах роста номинальной заработной платы в РФ за 10 месяцев 1999 г. в процентах к уровню декабря 1998 г. (табл. 5.5). Требуется выбрать наилучший тип тренда и определить его параметры. На графике рис. 5.3 наглядно видно наличие возрастающей тенденции. Возможно существование линейного тренда. Для дальнейшего анализа определим коэффициенты автокорреляции по уровням этого ряда и их логарифмам (табл. 5.6). Высокие значения коэффициентов автокорреляции первого, второго и третьего порядков свидетельствуют о том, что ряд содержит тенденцию. Приблизительно равные значения коэффициентов автокорреляции по уровням этого ряда и по логарифмам уровней позволяют сделать следующий вывод: если ряд содержит нелинейную тенденцию, то она выражена в неявной форме. Поэтому для моделирования его тенденции в равной мере целесообразно использовать и линейную, и нелинейную функции, например степенной или экспоненциальный тренд. Для выявления наилучшего уравнения тренда определим параметры основных видов трендов. Результаты этих расчетов представлены в табл. 5.7, согласно данным которой наилучшей является степенная форма тренда, для которой значение скорректированного коэффициента детерминации наиболее высокое. Уравнение степенного тренда можно использовать как в линеаризованном виде, так и в форме исходной степенной функции после проведения операции потенцирования. В исходном виде это уравнение выглядит следующим образом: или . Наиболее простую экономическую интерпретацию имеют параметры линейного и экспоненциального трендов. Параметры линейного тренда можно интерпретировать так: а — начальный уровень временного ряда в момент времени t = 0; b — средний за период абсолютный прирост уровней ряда. Применительно к данному временному ряду можно сказать, что темпы роста номинальной месячной заработной платы за 10 месяцев 1999 г. изменялись от уровня 82,66% со средним за месяц абсолютным приростом, равным 4,72 проц. пункта. Расчетные по линейному тренду значения уровней временного ряда определяются двумя способами. Во-первых, можно последовательно подставлять в найденное уравнение тренда значения t — 1,2,…, n, т.е. Во-вторых, в соответствии с интерпретацией параметров линейного тренда каждый последующий уровень рада есть сумма предыдущего уровня и среднего цепного абсолютного прироста, т. е. и т. д. График линейного тренда приведен на рис. 5.3. Параметры экспоненциального тренда имеют следующую интерпретацию. Параметр а — это начальный уровень временного ряда в момент времени t = 0. Величина - это средний за единицу времени коэффициент роста уровней ряда. Для нашего примера уравнение экспоненциального тренда в исходной форме имеет вид: или . Таким образом, начальный уровень рада в соответствии с уравнением экспоненциального тренда составляет 83,96 (сравните с начальным уровнем 82,66 в линейном тренде), а средний цепной коэффициент роста - 1,046. Следовательно, можно сказать, что темпы роста номинальной месячной заработной платы за 10 месяцев 1999 г. изменялись от уровня 83,96% со средним за месяц цепным темпом роста, равным 104,6%. Иными словами, средний за месяц цепной темп прироста временного рада составил 4,6%. По аналогии с линейной моделью расчетные значения уровней рада по экспоненциальному тренду можно получить как путем подстановки в уравнение тренда значений t = 1,2,..., л, так и в соответствии с интерпретацией параметров экспоненциального тренда: каждый его последующий уровень есть произведение предыдущего уровня на соответствующий коэффициент роста: и т.д. При наличии неявной нелинейной тенденции следует дополнять описанные выше методы выбора наилучшего уравнения тренда качественным анализом динамики изучаемого показателя, с тем, чтобы избежать ошибок спецификации при выборе вида тренда. Качественный анализ предполагает изучение проблем возможного наличия в исследуемом временном ряде поворотных точек и изменения темпов прироста, или ускорения темпов прироста, начиная с определенного момента (периода) времени под влиянием ряда факторов, и т. д. В случае если уравнение тренда выбрано неверно при больших значениях t, результаты анализа и прогнозирования динамики временного ряда с использованием выбранного уравнения будут недостоверными вследствие ошибки спецификации. Иллюстрация возможного появления ошибки спецификации приводится на рис. 5.4. Если наилучшей формой тренда является парабола второго порядка, в то время как на самом деле имеет место линейная тенденция, то при больших t парабола и линейная функция будут по-разному описывать тенденцию в уровнях ряда. При t > t* парабола второго порядка характеризует убывающую тенденцию в уровнях ряда , а линейная функция - возрастающую.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |