АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Законы сохранения и принципы симметрии

Читайте также:
  1. II. Местные законы
  2. II. Основные принципы и правила служебного поведения государственных (муниципальных) служащих
  3. II. Принципы организации и деятельности прокуратуры Российской Федерации
  4. III. Законы Российской Федерации и нормативные акты
  5. IV. ЗАКОНЫ ХП ТАБЛИЦ
  6. Акцизы. Принципы и особенность налогообложения
  7. Апластические анемии: этиология, патогенез, клиника, классификация, диагностика, принципы лечения.
  8. Аттестация гражданских служащих: понятие, цель, задачи, система, функции и принципы аттестации. Квалификационный экзамен.
  9. Базовые концепции и принципы менеджмента качества: «Кайдзен», TQM, TPS, ISO 9001-2008 и их применение в индустрии гостеприимства
  10. Базовые принципы переработки нефти.
  11. Базовые профессионально-этические принципы журналистики.
  12. Безналичный денежный оборот. Сущность принципы организации бдо

Мы рады той таинственности, которая находится за пределами нашей досягаемости.

Харлоу Шепли

Среди всех физических законов своей всеобщностью, высшей степени фундаментальностью выделяются законы со-


хранения энергии импульса, момента импульса и ряда других величин. Своим происхождением эти законы сохранения обязаны свойствам симметрии природы. Немецкий математик Эмми Нетер доказала в 1918 г. теорему, сущность которой заключается в утверждении, что различным симметриям физических законов соответствуют определенные законы сохранения. Свойства симметрии природы выражаются в неизменности вида физических законов, т. е. в их инвариантности, при некоторых преобразованиях. Тем самым была математически доказана связь между законами сохранения и симметрией законов природы. По выражению Р. Фейнмана, "среди наиболее мудрейших и удивительных вещей в физике эта связь — одна из самых интересных и красивых".

Симметрия предполагает неизменность объекта или свойств объекта по отношению к каким-нибудь преобразованиям, операциям, выполняемым над объектом. Слово это греческое и переводится как "соразмерность, пропорциональность, одинаковость в расположении частей". Симметрию можно понимать в геометрическом смысле — как симметрию положений. Например, рассмотрение объектов по отношению к отражениям, поворотам, переносам. Симметрия имеет определенную структуру, состоящую из трех факторов: 1) объект или явление, симметрия которого рассматривается; 2) изменение или преобразование, по отношению к которому рассматривается симметрия; 3) инвариантность или неизменность, сохранение каких-либо свойств объекта, выражающих рассматриваемую симметрию.

Важное значение имеет симметрия физических законов, которые в основном связаны со свойствами пространства и времени. Остановимся более подробно на физическом содержании свойств законов по отношению к преобразованиям фундаментальной симметрии.

1. Симметрия по отношению к сдвигу начала отсчета времени, или свойство однородности времени, проявляется в физическом эквиваленте разных его моментов. Разные моменты времени эквивалентны в том смысле, что любой физический


г


процесс протекает одинаковым образом независимо от того, когда он начался. При этом условия, существенные для процесса, в будущем должны быть такие же, как и в прошлом. Свойство однородности времени позволяет сравнить результаты опытов, проделанных в разное время. Однородность времени нужно понимать как физическую неразличимость всех моментов времени свободных объектов. Другими словами, если объекты не взаимодействуют с окружением, то для них любой момент времени может быть принят за начальный. Мы считаем, что изученные закономерности в поведении атомов были теми же самыми и многие миллионы лет тому назад. Отсутствие однородности времени вело бы к тому, что люди не могли бы прогрессировать в познании.

Однородность времени, т. е. симметрия по отношению к преобразованию t = t0 + t', приводит к закону сохранения энергии. Этот закон выполняется для систем, находящихся в неизменных во времени внешних условиях. Такие условия создаются только потенциальными внешними полями и называются стационарными. Действительно, выбор начала отсчета времени несущественен, если только неизменны во времени внешние условия, в которых находится система. Энергия, таким образом, может быть определена как физическая величина, сохранение которой обусловлено указанной симметрией.

2. Симметрия по отношению к сдвигу начала координат, или свойство однородности пространства, означает, что все точки физического пространства эквиваленты. Эта эквивалентность выражается в том, что явление, произошедшее в одной области пространства, повторится без изменений, если будет вызвано в другом месте. При этом необходимо перенести в новое место всю совокупность факторов существенно обусловливающих явление. Отметим, что надо сравнивать результаты одинаковых экспериментов, поставленных в разных лабораториях.

Однородность пространства означает, что любая его точка физически равноценна, т. е. перенос любого объекта в пространстве никак не влияет на процессы, происходящие с этим объектом.


Так, мы совершенно уверены, что свойства атомов у нас на Земле, в условиях Луны, других планет и на Солнце одни и те же. Если бы эти кажущиеся столь очевидными свойства однородности пространства и времени отсутствовали, то было бы почти бессмысленно заниматься наукой. В самом деле, представьте себе, к чему бы вело отсутствие однородности пространства — законы физики в Москве были бы одни, в Махачкале — другие.

Однородность пространства, т. е. симметрия по отношению к преобразованию сдвига , приводит к закону сохра-

нения импульса.

Закон сохранения импульса соблюдается для изолированных систем. Импульс, или количество движения, таким образом, является физической величиной, сохранение которой связано с однородностью пространства.

3. Симметрия по отношению к повороту координатных осей,
или свойство изотропности пространства, есть физическая эк
вивалентность направлений в пространстве. Она выражается
в том, что в повернутой установке, аппаратуре, лаборатории и
т. д. все процессы протекают точно так же, как и до поворота.
При этом повороту должно быть подвергнуто все, определяющее
течение процесса.

Изотропность пространства, т. е. симметрия по отношению к поворотам, приводит к закону сохранения момента импульса. Этот закон также соблюдается для изолированных систем. Момент импульса частицы или системы сохраняется также центрально-симметричным силовым внешним полем. Момент импульса является величиной, сохранение которой связано с изотропностью пространства.

4. Симметрия по отношению к переходу от покоя к состоя
нию равномерного и прямолинейного движения, или свойство
галилеевской (нерелятивистской) инвариантности, заключается
в физической эквивалентности покоя и равномерного прямоли
нейного движения. В любой системе все процессы происходят
независимо от того, покоится система или движется равномерно
и прямолинейно, если только переход от одного состояния к дру
гому осуществляется со всем существенным окружением.


Вследствие однородности пространства и времени движение свободного тела (тело, настолько удаленное от всех окружающих тел, что можно пренебречь его взаимодействием с ними) будет равномерным, т. е. за равные промежутки времени тело должно проходить равные расстояния; оно будет к тому же и прямолинейным, ибо пространство "плоское" — Евклидово. Такое движение свободных тел называют движением по инерции. Движение тел по инерции есть проявление своеобразной симметрии пространства и времени, их однородности.

Симметрия относительно перехода к движущейся системе отсчета, т. е. по отношению к преобразованиям Галилея, в нерелятивистском случае приводит к закону сохранения инерции. Он выполняется только для изолированных систем. Закон сохранения импульса недостаточен для обоснования закона сохранения центра инерции. Необходимо знать связь между импульсом и скоростью. Эта связь устанавливается с использованием фундаментальной симметрии относительно переходов от состояния покоя к равномерному прямолинейному движению. Выполнение всех этих законов сохранения в изолированной системе означает эквивалентность всех инерциальных систем, провозглашаемую принципом относительности.

Трехмерность пространства предопределяет векторную природу импульса и момента импульса; закон сохранения этих величин — векторные законы. Одномерность времени предопределяет скалярную природу энергии и соответствующего закона сохранения.

Тот факт, что закон сохранения энергии вытекает из однородности времени, означает, что течение времени само по себе не может вызвать изменение физических состояний системы. Связь закона сохранения импульса со свойством однородности пространства означает, что перемещение системы недостаточно для изменения ее состояния; последнее может произойти только в результате взаимодействия данной системы с другими системами. Связь закона сохранения момента импульса со свойством изотропности пространства означает, что поворот системы в пространстве не изменяет ее свойств.


В классической механике законы сохранения выводят из законов движения. Так, для получения закона сохранения импульса используют второй и третий законы Ньютона. Однако законы сохранения могут быть получены не на основе законов движения, а непосредственно из принципов симметрии. Область применимости законов сохранения шире, нежели область применимости тех или иных законов движения. Законы сохранения энергии, импульса, момента импульса применяются не только в классической механике, но и в квантовой; в то время как законы динамики Ньютона в квантовой механике не работают. Для тех, кто выводит законы сохранения из принципов инвариантности, ясно, что область применения этих законов выходит за рамки любых частных теорий (гравитации, электромагнетизма и т. д.), практически обособленных друг от друга в современной физике. Очевидно, что область применения законов сохранения должна быть столь же широка, как и область применения соответствующих принципов инвариантности. Это дает основание считать законы сохранения универсальными законами.

5. Симметрия относительно зеркального отражения означает, что физические законы не меняются при замене левого на правое, а правого на левое. С симметрией законов природы относительности отражения или частиц и античастиц связаны определенные законы сохранения. С первой симметрией связано сохранение физической величины, называемой пространственной четностью, а со второй — сохранение величины, называемой зарядовой четностью. Оба этих закона сохранения не вполне универсальны, поскольку соответствующие им симметрии нарушаются в слабых взаимодействиях.

Законы сохранения занимают в естествознании особое место. Существует следующая точка зрения на эти законы: они представляют собой наиболее глубокие, фундаментальные законы природы, к которым, возможно, сведутся в будущем все закономерности естествознания. В нашем знании о мире есть три последовательные ступени. На низшей ступени находятся явления, на следующей — законы природы, на третьей — принципы симметрии. Законы природы позволяют предсказать


явления, принципы симметрии позволяют предсказать законы природы. Прогресс в научном познании мира основывается, в конечном счете, на познании принципов симметрии. Но при этом необходимо иметь в виду не просто симметрию, а симметрию в диалектической взаимосвязи с асимметрией.

ВЫВОДЫ

1. Все то, из чего состоит окружающая нас известная сейчас и познаваемая нами часть Вселенной, называют материей. Философское определение материи — это объективная реальность вне и независимо от человеческого сознания и отражаемая им. Материя существует в различных формах (например, вещество, поле).

2. Вещества Вселенной при различных температурах и давлениях могут находиться в четырех агрегатных состояниях: твердом, жидком, газообразном и плазменном.

3. Мерой различных форм движения материи является энергия. Она бывает в различных видах: механическая, тепловая, внутренняя, химическая, электрическая, магнитная, солнечная, атомная, ядерная, термоядерная и др.

4. Фундаментальными законами природы являются законы сохранения. Существуют законы сохранения различных величин: массы, энергии, количества движения, момента количества движения, заряда и др.

5. В природе существуют принципы симметрии объектов и физических законов. Различным симметриям физических законов в природе соответствуют определенные законы сохранения. Закон сохранения энергии есть следствие однородности времени. Закон сохранения импульса есть следствие однородности пространства. Закон сохранения момента импульса есть следствие изотропности пространства.

Вопросы для контроля знаний

1. В чем качественная особенность философского определения материи от естественно-научного его понимания?

2. Какими всеобщими свойствами обладает материя?

3. Какие основные формы и виды, материи вы знаете?


4. В чем смысл теоремы Э. Нетер?

5. Какие виды энергии вам известны?

6. Чем обусловливается важность развития энергетики?

7. Дайте краткую характеристику традиционным источникам энергии.

8. Каковы перспективы развития атомной энергетики?

9. Какими факторами обусловливается относительно медленное развитие гелиоэнергетики?

10. Каковы перспективы широкого использования источников
энергии ветра, Мирового океана и геотермальных источников?


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)