|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Расстояния и размеры в мегамиреВопрос о том, что представляет собой Космос, окружающий Землю, нельзя было решить раньше, чем были определены расстояния до небесных тел. И это уточнение масштабов мира продолжалось почти 2500 лет. Какими только единицами не измерялись эти расстояния, начиная от греческих стадий и кончая сегодняшними мегапарсеками! Оставим эволюцию методов измерения расстояния до небесных тел и рассмотрим основные методы, с помощью которых мы сейчас определяем геометрические размеры Космоса и расстояния до небесных тел. Основным методом измерения расстояния до небесных тел является метод параллактического смещения или тригонометрического параллакса, когда измеряется угол, под которым наблюдается небесное тело, до которого определяется расстояние, с различных точек наблюдения. Расстояние между точками, из которых наблюдается небесное тело, называют базисом. Зная величину базиса и угла наблюдения, по формулам тригонометрии можно определить расстояние до небесного тела. Угол, под которым виден базис с небесного тела, до которого определяется расстояние, называется параллаксом. При данном расстоянии до небесного тела параллакс тем больше, чем больше базис. В пределах Солнечной системы в качестве базиса используют радиус Земли и метод измерения расстояний называют методом суточного параллакса. Угол, под которым со светила, находящегося на горизонте, был бы виден радиус Земли, называется горизонтальным суточным параллаксом светила. Конечно, со светила никто не наблюдает радиус Земли, а горизонтальный параллакс определяют по измерениям максимальной высоты светила из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющих известные географические широты. Наибольший горизонтальный суточный параллакс имеет ближайшее к Земле небесное тело — Луна (рл = 57'). Параллаксы планет и Солнца составляют всего лишь несколько секунд (рс = 8", 8). Масштабы расстояний в мире небесных тел заставляют астрономов пользоваться гораздо более крупными единицами измерения расстояний, чем километры. Одной из таких единиц является астрономическая единица (а.е.), равная среднему расстоянию от Солнца до Земли (1 а.е. = 149,6 млн км). До Меркурия от Солнца = 0,4 а.е., а расстояние до самой далекой планеты Плутон можно принять как размер Солнечной системы и равно примерно 40 а.е. Во второй половине XX в. возникла идея метода непосредственного определения расстояния до небесных тел. Он заключается в том, что на небесное тело посылают мощный кратковременный радиоимпульс, а затем принимают отраженный сигнал. Зная скорость распространения света в вакууме с = 300 000 км/с и время распространения, определяют расстояние. Радиолокационные наблюдения позволили с большей точностью определить расстояние до небесных тел в Солнечной системе. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера. Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводить опыты по лазерной локации Луны. Метод лазерной локации аналогичен радиолокации, однако точность измерения значительно выше. Оптическая лазерная локация дает возможность определить расстояние между выбранными точками лунной и земной поверхностей с точностью до сантиметров, что позволяет изучить рельеф поверхности небесных тел. Метод параллакса пригоден и для определения расстояний до ближайших звезд. Только в качестве базиса используется не радиус Земли, а средний радиус земной орбиты, и метод определения расстояния до звезд по углу, под которым со звезды был бы виден средний радиус земной орбиты, называют годичным параллаксом (рис. 10.1). Расстояние до звезды, которое соответствует годичному параллаксу в 1", называется парсеком (от слов "параллакс" и "секунда", обозначается пк. 1пк = 206 265 а.е.). Эта единица используется в звездной астрономии, так как не только километр, но даже астрономическая единица слишком мала для измерения расстояний до звезд. Самая близкая к нам звезда после Солнца находится в созвездии Центавра (Проксима Центавра или Кентавра). Ее годичный паралакс — 0",76, что соответствует 1,33 пк. Дадим соотношение между километром, астрономической единицей, парсеком и световым годом, расстоянием, которое свет проходит за год. 1пк = 3,26 св.г. = 206 265 а.е. = 3 1013 км. Измерение параллактического смещения звезд хотя и очень трудоемко, но является самым надежным, фундаментальным способом определения их расстояний. Естественно, что это смещение заметно только у сравнительно близких звезд. В настоящее время оно определяется по четырем фотографиям звездного неба, полученным на протяжении года через интервалы времени в три месяца. К настоящему времени тригонометрические параллаксы определены примерно у 7500 звезд. Расстояние до более далеких звезд определяется по периоду изменения блеска (светимости) звезд — цефеид. Цефеиды — это пульсирующие звезды, которые периодически раздуваются и сжимаются. Между периодом (Р) пульсации долгопериоди-ческих цефеид и светимостью этих звезд существует зависимость, получившая название "период-светимость". Если из наблюдений известен период изменения блеска цефеиды, то, пользуясь зависимостью период-светимость, можно определить ее абсолютную звездную величину (М), которая равна видимой звездной величине (m) этой звезды с расстояния 10 пк по формуле М = 0,2 (2 - 1gP). Тогда по формуле 1gr = 0,2 (m - М) + 1 легко вычислить расстояние до цефеиды, зная из наблюдений ее видимую звездную величину (т). Так как цефеиды относятся к звездам-гигантам и сверхгигантам (т. е. тем, которые имеют огромные размеры и светимости), то они видны с больших расстояний. Обнаруживая цефеиды в далеких звездных системах, можно определить расстояние до этих систем (рис. 10.2). До более далеких галактик, у которых наблюдаются вспышки сверхновых звезд (у которых происходит внезапное резкое увеличение светимости), расстояние можно оценить исходя из того, что все сверхновые, как это следует из наблюдений, имеют примерно одинаковую абсолютную звездную величину в максимуме блеска Мmах. В этом случае по наблюдаемой величине Мmах можно найти модуль расстояния и расстояние до этой галактики. Имеются и другие способы определения расстояний до галактик, но мы остановимся лишь на одном, применяемом для оценки расстояний до далеких галактик. В спектрах далеких галактик спектральные линии смещены в сторону красного конца спектра. Это явление получило название красного смещения и вызвано удалением галактик. В 1929 году американский астрофизик Э. Хаббл установил закономерность, назьюаемую ныне законом Хаббла: лучевые скорости галактик (vr) пропорциональны расстояниям до них (r). vr = Нг. В этом законе коэффициент пропорциональности Н называется постоянной Хаббла. Расстояния до далеких галактик оказались настолько большими, что их приходится выражать не в парсеках (пк) и килопарсеках (кпк), а в мегапарсеках (Мпк). В настоящее время значение красного смещения измерено в спектрах более 15 000 галактик, причем оказалось, что лучевые скорости наиболее далеких превышают 100 000 км/с, а их расстояния составляют сотни и тысячи мегапарсеков, т. е. свет от них доходит до нас за сотни миллионов и миллиарды лет. Для определения масс небесных тел важное значение имеет обобщение Исааком Ньютоном третьего закона Кеплера на любые системы обращающихся тел. Если, в частности, массивным (центральным) телом является Солнце с массой М0, то для него и двух движущихся вокруг него планет с массами m1 и m2 третий закон Кеплера будет иметь вид: т. е. квадраты периодов обращения (), умноженные на сумму масс Солнца и планеты (М0 + m1 и М0 + m2), относятся как кубы больших полуосей орбит планет (). Можно применить третий закон Кеплера и к другим системам, например к движению планет вокруг Солнца и спутника вокруг планет. Обозначим массы Солнца, планеты и ее спутника соответственно через М0, m и m1периоды обращения планеты вокруг Солнца и спутника вокруг планеты — через Т и Т1 и, наконец, средние расстояния планеты от Солнца и спутника от планеты — через а и а1 Тогда третий закон Кеплера можно записать в виде: Масса Солнца больше, чем сумма масс всех тел Солнечной системы, в 750 раз, больше, чем масса Юпитера, в 1050 раз, больше, чем масса Земли в 330 000 раз, т. е. М0 т. Масса планеты обычно также очень велика по сравнению с массой спутника (исключение составляют Земля и Луна, а также Плутон с его спутником Хароном), т. е. m m1 Поэтому с достаточной степенью точности можно вычислить отношение массы Солнца к массе планеты по формуле Эта формула получена из рассмотрения движения планеты вокруг Солнца и спутника вокруг планеты. Аналогичный вид будет иметь формула для определения массы планеты, имеющей спутника, если эту систему небесных тел сравнить с другой планетой и ее спутником: где m1 и — массы сравниваемых планет; Т и Т1— периоды обращения спутников планет; а1 и — средние расстояния между спутниками планет. Массы небесных тел, не имеющих спутников, определяют по величине силы притяжения, которое оказывает данное небесное тело на другие небесные тела. Отклонения в движении небесного тела под действием притяжения со стороны небесного тела, массу которого необходимо измерить, называют в небесной механике возмущениями. По величине возмущения можно определить массу неизвестного небесного тела. Примером этого является открытие Нептуна и Плутона. Меркурий, Венера, Марс, Юпитер и Сатурн более известны людям с глубокой древности. Планету, находящуюся за орбитой Сатурна и не видимую невооруженным глазом, открыл в 1781 г. с помощью телескопа английский астроном (профессиональный музыкант, который начал заниматься астрономией как любитель) Уильям Гершель. Она была названа Ураном. Основываясь на законах небесной механики, астрономы вычислили орбиту Урана, но довольно скоро выяснилось, что в движении новой планеты заметны отклонения от кеплеровской орбиты. Наблюдаемые отклонения могли означать либо то, что действие закона всемирного тяготения ограничено лишь близкими планетами, либо то, что за Ураном есть еще какая-нибудь планета, возмущающая его движение. Определив величину возмущения, астрономы решили попытаться открыть новую планету, вычислив ее положение в пространстве. Независимо друг от друга такую задачу удалось решить двум молодым математикам — англичанину Джону Адамсу и французу Урбену Леверье. Астроном Берлинской обсерватории Иоганн Галле, получив телеграмму от Леверье с просьбой поискать планету в указанном месте, 23 сентября 1846 г. обнаружил в созвездии Водолея светило, которого не было на звездной карте. Так была открыта восьмая планета Солнечной системы. Это был триумф небесной механики, торжество гелиоцентрической системы. Таким же образом по возмущениям Нептуна американский астрофизик П. Ловелл вычислил, а Томбо в 1930 г. обнаружил девятую планету Солнечной системы — Плутон. Массы звезд определяют также по результатам наблюдений двойных звезд. К системам двойных звезд применимы закон всемирного тяготения и обобщенные Ньютоном законы Кеплера. Пусть массы главной звезды с большей массой М1, а ее спутника, обращающегося вокруг главной ~М2, период обращения спутника обозначим через Т, большая полуось орбиты спутника — А. Тогда, обозначив через Мс и М3 массы Солнца и Земли, Тз — период обращения Земли, а — большую полуось земной орбиты, можно написать: Если принять массу Солнца за единицу (Мс = 1) и учесть, что = 1 год, а = 1 а.е., то Величина А связана с годичным параллаксом звезды (р) и угловым расстоянием между компонентами (а) простым соотношением где а и р выражены в секундах дуги, а расстояние А — в астрономических единицах. Тогда Массы звезд в отличие от их светимостей и размеров различаются не очень сильно. Наиболее массивные звезды больше, чем Солнце, в 50-80 раз, а наименьшие по массам звезды составляют 0,05 массы Солнца, хотя в данном случае следует говорить уже не о звезде, а об объекте, по своей природе близком к планетам. 10.2. Земля как планета и природное тело Ты разумом вникни поглубже, пойми, Что значит для нас называться людьми... Земное с небесным в тебе сплетено, Два мира связать не тебе ли дано? Фирдоуси Земля кажется нам такой огромной, такой надежной и так много значит для нас, что мы не замечаем ее второстепенного положения в семье планет. Единственное слабое утешение состоит в том, что Земля — наибольшая из планет земной группы. К тому же она обладает атмосферой средней мощности, значительная часть земной поверхности покрыта тонким неоднородным слоем воды, а вокруг нее обращается величественный спутник, диаметр которого равен четверти земного диаметра. Однако этих аргументов вряд ли достаточно для того, чтобы поддерживать наше космическое самомнение. Крошечная по астрономическим масштабам Земля — это наша родная планета, и поэтому она заслуживает самого тщательного изучения (рис. 10.3). По форме Земля близка к двуосному эллипсоиду. На XVI съезде Международного астрономического союза, состоявшемся в Гренобле (Франция) в августе 1976 г., приняты следующие элементы земного сфероида: экваториальный (наибольший) радиус Rэ = 6378,140 км, полярный (наименьший) радиус Rп = = 6356,755 км, различие в радиусах Rэ - Rп = 21,385 км, сжатие . Сфероид Земли близок к геоиду — поверхности океанов, продолженной под материками, в каждой точке которой перпендикуляр совпадает с направлением силы тяжести. За средний радиус Земли принимают Rcp = 6371 км, который соответствует радиусу шара по объему, равному объему эллипсоида Земли. Относительно геоида производятся измерения высот на суше и глубин в океане. Наибольшую высоту над поверхностью мирового океана — 8848 км — имеет вершина Джомолунгма (Эверест), находящаяся в Гималаях (Евразия), а наибольшую глубину — 11 022 м — имеет Марианский желоб в Тихом океане. Земля участвует в двух движениях, происходящих с запада на восток: она вращается вокруг собственной оси и обращается вокруг Солнца. Положение точки или тела на земной поверхности определяют с помощью географической сетки. Географическую сетку образуют полюса, параллели и меридианы. Точки пересечения оси вращения Земли с ее поверхностью называются географическими полюсами. Имеются северный и южный географические полюса. Большой круг земной поверхности, образованный пересечением плоскости, проходящей через центр Земли перпендикулярно оси ее вращения, называется экватором. Он делит земной шар на Северное и Южное полушария. Линии сечения поверхности Земли плоскостями, параллельными плоскости экватора, называются параллелями, а линии сечения, образованные плоскостями, проходящими через ось вращения Земли, называются меридианами. Для определения положения точки на земной поверхности используют две географические координаты — широту и долготу. Географическая широта (<р) — это угол между плоскостью экватора и отвесной линией в точке, положение которой определяется. Широты отсчитываются в пределах от нуля (на экваторе) до 90° (на полюсах) в сторону Северного и Южного полюсов и называются соответственно Северной и Южной широтой. Географическая долгота () — это угол между нулевым (Гринвичским) меридианом и плоскостью меридиана, проходящего через точку, положение которой определяется. Долгота отсчитывается в пределах от нуля (на Гринвичском меридиане) до 180° на восток или на запад. Соответственно этому различают восточную или западную долготу. Орбита обращения Земли вокруг Солнца близка к окружности и представляет собой эллипс с малым эксцентриситетом (е = = 0,017). Солнце находится не в центре орбиты, а в одном из фокусов эллипса. Поэтому на протяжении года расстояние от Солнца до Земли периодически меняется: от 147,1 млн км (3 января) до 152,1 млн км (4 июля). Большая полуось земной орбиты определяет среднее расстояние Земли от Солнца и равно 149,6 млн км. Фокус орбиты отстоит от центра эллипса на 2,5 млн км. Самая близкая к Солнцу точка земной орбиты называется перигелием, а самая далекая — афелием или апогелием. Перпендикулярная к солнечным лучам поверхность Земли на среднем расстоянии от Земли до Солнца за последние 3 млрд лет получала одинаковое количество солнечной энергии. Поэтому ее называют Солнечной постоянной, и она равна Е0 = = 1360 Вт/м2. Однако в данную точку земной поверхности количество поступающей солнечной энергии в течение года изменяется. Поэтому на Земле происходит смена времен года. Это изменение количества энергии происходит по двум причинам. Из-за изменения расстояния от Земли до Солнца в перигелии (3 января) количество энергии, поступающее на Землю, на 7% больше, чем в афелии (4 июля). Более существенно изменяется солнечная энергия, поступающая на данную поверхность Земли, из-за изменения наклона падения солнечных лучей. Это происходит в течение года вследствие обращения Земли вокруг Солнца, наклона земной оси к плоскости орбиты под углом 66°33' и сохранения этого наклона при обращении вокруг Солнца. Например, в Москве в 4,6 раза больше солнечной энергии в день летнего солнцестояния 22 июня, чем в день зимнего солнцестояния 22 декабря. Количество падающей солнечной энергии зависит от географической широты и полуденной высоты Солнца над горизонтом. В соответствии с видимым движением Солнца земная поверхность разделена на тепловые (климатические) пояса. Области земной поверхности, отстоящие от полюсов на 23°27', называются полярными кругами, или северным и южным холодным поясами. На границах полярных кругов один раз в году наблюдается полярный день и полярная ночь. Пояс земной поверхности, ограниченный по обе стороны от экватора географическими параллелями 23°27' (северным и южным тропиками), называется жарким или тропическим поясом. В этом поясе два раза в год Солнце в полдень проходит через самый зенит, и его лучи падают на земную поверхность отвесно. На самих тропиках Солнце проходит через зенит только один раз в год — 22 июня на северном тропике и 22 декабря — на южном тропике. Между полярными кругами и тропиками лежат умеренные пояса; в них никогда не бывает полярных дней и ночей, и Солнце никогда не проходит через зенит. Данные геофизики, геохимии, геологии, физической географии и других наук привели к выводу о том, что земной шар в своем строении состоит из ряда концентрических оболочек, или геосфер. Геосферы одна от другой отличаются по химическому составу и агрегатному состоянию вещества, что определяется их термодинамическими условиями существования. В направлении от центра земного шара к космическому пространству выделяются следующие геосферы: литосфера, биосфера, гидросфера, атмосфера, магнитосфера. Литосфера и атмосфера, в свою очередь разделяются на ряд сферических слоев, не одинаковых по своим физическим свойствам. Приведем краткие данные о каждой сфере. Литосфера, т. е. твердая сфера Земли, изучена методами анализа распространения сейсмических волн. Эти исследования показали, что плотность земных пород, увеличивающаяся к центру Земли, в некоторых местах дает скачкообразный рост. По этим изменениям строение Земли разделяют на ядро, мантию и кору. Причем внешнее ядро находится в расплавленном состоянии, внутри которого имеется твердое ядро. Вещество внешнего ядра имеет свойства тягучей жидкости и обладает электропроводностью. Температура внутри Земли повышается с градиентом 2° на 100 м глубины. Причиной разогрева земного грунта является радиоактивный распад элементов в мантии. Сейчас считают, что кора вместе с гидросферой и атмосферой образовалась в результате вулканической деятельности — выбросы лавы, пара и газов из внутренних частей мантии. Вулканическая деятельность также привела к образованию гор. Возраст земной коры оценивается примерно в 3,8 млрд лет. В верхней части она образована осадочными, т. е. вторичными породами, кое-где с участием молодых вулканогенных пород. В океанических впадинах под осадочными имеется базальтовый слой. У материков между осадочной толщей и базальтовым слоем залегает еще гранитный слой. Пересекая поверхность Мохорови-чича, продольные сейсмические волны изменяют свою скорость скачкообразно: с 7,1 км/сна 8,1 км/с. Мощнейшие толщи вторичных пород (в том числе и преобразованных в граниты) земной коры — ярчайший показатель необычно высокой активности действующих на Земле экзогенных процессов по сравнению с процессами на других планетах. Природа щедро раздала свои материальные ресурсы нашей планете. Но если сравнить их с наиболее часто употребляемыми материалами, то нетрудно заметить между ними некую обратно пропорциональную зависимость: чаще всего человек использует те вещества, запасы сырья которых ограничены, и, наоборот, крайне слабо использует такие химические элементы и их соединения, сырьевые ресурсы которых почти безграничны. В самом деле, 98,6% массы физически доступного слоя Земли составляют всего восемь химических элементов. Картина их распределения представлена на рис. 10.4. В морфоструктурном отношении Земля резко отличается от других планет, в частности, широким распространением линейных форм, которых там или вообще нет, кроме тектонических разломов, или они единичны и слабо выражены. Для человечества недра Земли являются кладовой полезных ископаемых. Их добыча из года в год растет, и в настоящее время человечество ежегодно извлекает из недр Земли более 1 млрд т железной руды, более 3 млрд т нефти, более 2,5 млрд т угля, миллиарды тонн строительных и других материалов. Процесс формирования полезных ископаемых связан с эволюцией Земли. Одна из современных теорий, объясняющих динамику процессов в земной коре, называется теорией неомо-билизма. Дрейф крупных плит литосферы с возвышающейся на них сушей называется неомобилизмом. Теория неомобилизма сегодня является основой всех наук о Земле. Она, в частности, вносит весомый вклад в описание таких процессов, происходящих в земной коре, как извержения вулканов и землетрясения. Атмосфера Земли представляет собой газовое образование, которое окутывает нашу планету сплошной оболочкой. Верхняя граница атмосферы лежит на высоте нечетко, так как с высотой газы разреживаются и переходят в мировое пространство постепенно. Атмосфера сохраняет тепло солнечных лучей, защищает живое от губительного воздействия далеких ультрафиолетовых солнечных излучений и космических лучей. Без атмосферы на Земле был бы резкий температурный контраст между освещенной и неосвещенной солнечным излучением сторонами планеты. Атмосфера Земли образована смесью газов, влаги и частиц пыли. Сухой воздух вблизи поверхности Земли содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,03% углекислого газа. На долю всех остальных газов, вместе взятых, приходится 0,01%. Состав атмосферы до высоты 100 км существенно не изменяется, а выше кислород, а затем и азот находятся в атомарном состоянии. Влага попадает в атмосферу вследствие испарений с поверхности Земли. Около 90% ее сосредоточено в нижнем пятикилометровом слое. Половина массы атмосферы находится до высоты 5-6 км, а 90% — до 16 км. С высотой изменяется не только сама атмосфера (давление, плотность и температура воздуха), но и электрическое состояние атмосферы, а на больших высотах еще и состав. Поэтому в атмосфере выделяют несколько сфер с различными свойствами. К ним относятся: тропосфера, стратосфера, мезосфера, термосфера (или ионосфера), экзосфера. Тропосфера простирается от поверхности Земли до высоты 8-12 км. В тропосфере находится почти весь водяной пар. Здесь формируется погода. Характерная особенность тропосферы — понижение температуры в среднем на 6 °С на каждый километр высоты. Над тропосферой находится стратосфера Ее верхняя граница расположена на высоте 50-55 км Стратосфера характеризуется возрастанием температуры с высотой. Стратосфера отличается от тропосферы малой турбулентностью воздушных масс, ничтожным содержанием водяного пара, повышенным содержанием озона. На высотах 20-25 км концентрация озона наиболее высокая, и этот тонкий слой называют озоносферой. Выше стратосферы до высот порядка 80 км находится мезосфера. В ней температура с высотой падает и у верхней границы составляет -80 °С. Между высотами 80 км и 800 км располагается термосфера. В термосфере температура растет до 2000 °С из-за влияния радиации Солнца. Учитывая способность газов термосферы ионизировать, ее называют также ионосферой. Экзосфера — самая верхняя, сильно разряженная часть атмосферы с температурой 2000 °С. Гидросфера, или водная оболочка Земли, не является сплошной и занимает 70,8% земной поверхности. Гидросфера влияет на климат, создавая значительный парниковый эффект, сглаживает температурные контрасты различных участков земной поверхности за счет большой теплоемкости и переноса тепла из экваториальной области в умеренные и полярные широты. К гидросфере относятся Мировой океан и воды суши: реки, озера, подземные воды, ледники. Все они связаны между собой в планетарном процессе круговорота воды, газов и минеральных солей. Самое большое скопление воды на поверхности Земли составляет Мировой океан, который делится на Тихий, Атлантический, Индийский, и Северный Ледовитый. Интенсивное перемещение океанических вод происходит как за счет мощных течений, так и вследствие приливов и отливов. Поверхность океанов и морей постоянно покрыта волнами. Различают волны ветровые, цунами и барические. Первые из них возникают при ветре. Особенно большие волны вызывают штормы и ураганы. Волны цунами образуются при извержениях подводных вулканов и при подводных землетрясениях. Барические волны возникают при прохождении циклона. Значит, Мировой океан является самым большим скоплением воды на Земле, основным водохранилищем и колыбелью жизни нашей планеты, играет роль гигантского геохимического реактора и аккумулятора тепловой энергии. В гидросферу Земли входят также реки и озера. Различают четыре вида питания рек: дождевое, снеговое, ледниковое, подземное. Озера занимают 2% поверхности суши. В целом гидросфера Земли представляет собой уникальное образование. Ничего подобного пока что не обнаружено ни на какой другой планете. Именно благодаря гидросфере на Земле присутствует живое вещество, и вполне возможно, что именно наличие гидросферы является основной причиной его возникновения. Биосфера является одной из оболочек Земли, свойства которой обусловили появление, существование и развитие в ее пределах органической жизни. В биосферу включают нижнюю часть атмосферы (тропосферу), гидросферу и верхнюю часть литосферы. Таким образом, верхняя граница биосферы поднимается до высоты 33 км, где встречены бактерии, а нижняя граница находится в литосфере на глубине 11 км, где обнаружены микроорганизмы в водах нефтяных месторождений. С жизнедеятельностью организмов связаны процессы газообмена, круговорот кислорода, углекислого газа, углекислоты и воды, а также малый биологический круговорот биогенных химических элементов. Кроме того, организмы принимают значительное участие в формировании геологических напластований в земной коре (ископаемые угли, ракушечные известняки и др.); изменяют рельеф поверхности Земли и играют первостепенную роль в развитии почв. Магнитосфера обусловлена наличием вокруг нее магнитного поля. Земля обладает относительно большим магнитным полем. Магнитные полюса Земли не совпадают с географическими, а магнитная ось Земли наклонена относительно оси вращения под углом около 11,5°. Причиной несоответствия современного геомагнитного поля древним полям (палеомагнетизм) являются горизонтальные перемещения отдельных частей земной коры. Магнитное поле Земли удерживает огромное число энергичных частиц, как электронов, так и протонов, образуя вокруг Земли ее магнитосферу. Частицы заполняются как огромные кольца или пояса, охватывающие Землю вокруг геомагнитного экватора. Для людей важным процессом на Земле является погода. Погода определяется явлениями, происходящими в атмосфере при ее взаимодействии с земной поверхностью, Мировым океаном и Вселенной. Совокупность и последовательная смена всех возможных в данной местности условий погоды за многолетний промежуток времени называется климатом. Различают климат материка, какой-то его части, зоны, района, города. Погода и климат воздействуют на живое, существенно влияют на деятельность людей. Наука о земной атмосфере и происходящих в ней процессах называется метеорологией. Метеорологи разрабатывают и совершенствуют методы прогноза погоды, ищут способы изменения погоды и климата в необходимом для людей направлении. Прежде всего климат любой части земного шара зависит от географической широты. Имеется зональность и высотная поясность растительности, связанная с изменением количества приходящего на Землю тепла. Основными причинами зональности природы Земли являются ее шарообразность, суточное вращение и годовое обращение Земли вокруг Солнца. Количество поступающей солнечной энергии убывает от экватора к полюсам в зависимости от угла падения солнечных лучей и длины их пути через атмосферу. Это и является причиной географической зональности. Поверхность Земли обладает различной отражающей способностью солнечных лучей (величиной альбедо). Больше всего солнечных лучей (от 80 до 97%) поглощает гидросфера. Поэтому Мировой океан является накопителем и главным источником тепла на Земле. Однообразием свойств водной поверхности объясняется равномерность и малая величина колебаний температуры над океанами. В отличие от водной, свойства поверхности суши разнообразны и ее участки поглощают разное количество солнечной энергии. Основной причиной движения воздуха на земном шаре, т. е. причиной возникновения ветров, является неравномерное распределение на поверхности Земли лучистой энергии Солнца. К метеорологическим элементам, определяющим погоду, относятся: солнечная радиация, температура воздуха и почвы, влажность воздуха, атмосферное давление, ветер, облачность, осадки, снежный покров, видимость, метель, туманы и т. д. При сближении теплового и холодного потоков воздуха горизонтальные перепады температуры, влажности и давления увеличиваются, а скорость ветра возрастает. Зоны, в которых холодные и теплые воздушные массы сближаются, называют переходными, или фронтальными. На этих фронтах из-за разности температур и давлений возникают обширные вихри, называемые циклонами и антициклонами. Как и на всякое движение относительно Земли, на направление и силу ветра существенное влияние оказывает вращение Земли (силы Кориолиса). Развиваясь, эти вихри охватывают всю тропосферу, достигая десятков тысяч километров в диаметре. Обычно с циклонами связана облачная с осадками погода, с антициклонами — ясная и малооблачная. В циклоне преобладают восходящие движения воздуха, которые способствуют конденсации влаги, в антициклоне — нисходящие, при которых степень насыщения влагой уменьшается. На низких географических широтах преобладают ветры, называемые пассатами и муссонами. Пассаты — это ветры, возникающие из-за различия атмосферного давления в экваториальной зоне. В Северном полушарии они имеют северо-восточное направление, в Южном — юго-восточное. Муссоны — это сезонные ветры, возникающие из-за разности температур воздуха над материками и океанами. Зимой они дуют с холодных материков к теплым океанам, летом — со сравнительно холодных океанов на нагретые материки. В последнее столетие наблюдается глобальное потепление климата Земли. Причиной считается увеличение содержания в атмосфере углекислого газа, что является результатом хозяйственной деятельности людей. Большинство обитателей Земли принимают свою планету такой, какая она есть. Конечно, люди ворчат на плохую погоду, жалуются на плохие урожаи или стихийные бедствия, но обычно не проводят критического анализа. Когда-то такое отношение было оправданно. Ведь у человека не было выбора — родившись на Земле, он должен был принимать ее гостеприимство. Теперь, в эпоху освоения космического пространства, уместно спросить: не стоит ли переселиться на другую планету или обосноваться в космическом корабле? Окинем же нашу родную планету критическим взглядом. Посмотрим, в какой степени безопасны мы на Земле, какие опасности таятся в космосе и какие уникальные условия необходимы для поддержания хрупкого творения, которое мы называем жизнью. Среди планет земной группы Земля достигла высокой степени эволюции благодаря исключительному динамизму развития, широкому диапазону интенсивных природных процессов. Коренные изменения планеты произошли в ее внешней области — в строении коры, устройстве поверхности, составе атмосферы и климатической обстановке. По сравнению с другими планетами Земля обладает наибольшей плотностью, а следовательно, и большим количеством радиогенной и гравитационной энергии, что обеспечивает ей чрезвычайно активную внутреннюю жизнь. Разрез земного шара показан на рис. 10.5. Сейсмическое зондирование земных недр установило факты их дифференциации на концентрические сферы. Это установлено из анализа изменения скорости прохождения сейсмических волн — продольных (Р) и поперечных (S). В твердом веществе земных недр плотность с глубиной возрастает и соответственно увеличивается скорость прохождения сейсмических волн. Через жидкую среду (внешнее ядро) поперечные волны не проходят, а скорость продольных снижается. Сила притяжения Земли оказалась достаточной для удержания выделявшихся из ее недр газов и паров воды, из которых сформировались плотная атмосфера и мощная гидросфера. Земная поверхность как бы надежно защитилась от воздействия космоса (сильного охлаждения, проникновения губительной для всего живого коротковолновой радиации Солнца и космических лучей), а также и от метеоритной бомбардировки. Атмосфера обладает еще одним важным свойством — парниковым эффектом. Благодаря ему средняя температура земной поверхности поднялась на 38 °С, т. е. вместо равновесной температуры земной поверхности в -23 °С ее действительная температура составляет в настоящее время +15 °С. Гидросфера, благодаря высокой теплоемкости и низкой теплоотдаче, сильно смягчает температурную контрастность земной поверхности. Этому способствует и облачный покров, распространенный приблизительно на 50% поверхности земного шара. На Земле мало мест, где максимальные годовые амплитуды температур превышали 100 °С (Центральная Якутия). Колебания остальных мест крайне малы — на экваторе не более 10 °С, в среднем максимальные колебания можно считать +50 °С до -50 °С. Для функционирования природной среды важно, что в этом температурном интервале гидросфера может находиться во всех трех фазах: жидкой, твердой, газообразной. Воды на Земле так много (причем 95% ее находится в жидкой фазе), что если бы ее равномерно распределить по поверхности, то образовался бы слой толщиной в 2,7 км, т. е. Землю можно считать океанической планетой. В самом деле, 71% поверхности Земли приходится на океаны и моря, и только 29% площади, т. е. в ~ 2,5 раза меньше, занимает суша. На Земле экзогенные процессы (перемещения и преобразования вещества под влиянием солнечной энергии) протекают в бурном темпе, что оказывает существенное воздействие даже на общую эволюцию планеты, а тем более на ее внешнюю область. Экзогенный фактор на Земле может при соответствующих условиях не только свести на нет морфологический эффект действия эндогенного фактора (перемещения и преобразования под воздействием внутренней энергии), но и полностью нейтрали- зовать фундаментальный космический фактор — метеоритную бомбардировку. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.) |