АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вероятностный характер законов микромира. Концепции неопределенности и причинности

Читайте также:
  1. A. Учитывая иммунный характер болезни, лечение надо начинать с кортикостероидов
  2. I. Характер и его развитие
  3. II. ОСНОВНЫЕ ЦЕЛИ И ЗАДАЧИ КОНЦЕПЦИИ
  4. III етап - серпень 1994 р. - червень 1996 р. (етап інтенсивної масової приватизації (роздержавлення), або указо-декрето-законовий період)
  5. III. Блок законов по радиационной безопасности населения.
  6. V етап розвитку міграції робочої сили розпочався з 1980 років і триває понині. Збільшення масштабів еміграції з країн з перехідною економікою характерно для такого етапу.
  7. V. Характеристика современного гражданского права
  8. VI. Характер діяльності учнів.
  9. VII. Характер діяльності учнів.
  10. А как ревнители законов с Запада хранят нейтралитет в Ливии?
  11. А. Акты общего характера
  12. Автоматизированное рабочее место (АРМ) таможенного инспектора. Назначение, основные характеристики АРМ. Назначение подсистемы «банк - клиент» в АИСТ-РТ-21.

Как прекрасно почувствовать единство целого комплекса явлений, которые при непосредственном восприятии казались разрозненными.

А. Эйнштейн

Принципиальное отличие квантовой механики от классической состоит также в том, что ее предсказания всегда имеют вероятностный характер. Для того чтобы описать распределение вероятности нахождения частицы в данный момент времени в некоторой области пространства, введем некоторую функцию , называемую волновой функцией. Величиной определяется интенсивность волн де Бройля. Такая интерпретация волновой функции объясняет, почему волны де Бройля иногда называют "волнами вероятности". Волновая функция является основной характеристикой состояния микрообъектов (элементарных частиц, атомов, молекул). С ее помощью в квантовой механике могут быть вычислены средние значения физических величин, которые характеризуют данный объект, находящийся в состоянии, описываемом волновой функцией

Двойственная корпускулярно-волновая природа частиц, изучаемых в квантовой механике, статистический смысл -функции, заданием которой определяется положение частицы в пространстве, приводят к весьма важному вопросу о границе применимости понятий классической физики в микромире.


В квантовой механике оказывается невозможным одновременно характеризовать объект микромира его координатами: положением в пространстве — х и импульсом — Рх (в классическом смысле этих понятий) (рис. 7.2). Соотношение

называется соотношением неопределенности для величин х и Рх. Это соотношение открыл В. Гейзенберг в 1927 г. Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше или равно постоянной Планка h, называется принципом неопределенности Гейзенберга. Соотношение неопределенности указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц.

Соотношение неопределенности является одним из фундаментальных положений квантовой механики. Одного этого соотношения достаточно, чтобы получить ряд важных результатов. В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего ато-


ма и минимальную возможную энергию электрона в таком атоме. Соотношения неопределенностей являются следствием объективно существующей двойственности частиц микромира — наличия у них корпускулярных и волновых свойств. Эти соотношения свидетельствуют об объективно существующих ограничениях в возможности описания поведения микрообъектов с помощью классических понятий координат и импульсов. В ряде случаев описывать движения микрообъекта так, как это делается в классической механике — с помощью задания в каждый момент времени его координат и импульса, не имеет смысла, ибо сами эти понятия одновременно не могут быть применены к микрообъекту. В квантовой механике само понятие о состоянии системы приобретает иной смысл, чем в классической физике, — для определения этого состояния нужен иной подход. Максимально точным заданием состояния микрообъекта в квантовой механике является задание его волновой функции , которая удовлетворяет некоторому дифференциальному уравнению, содержащему первую производную волновой функции по времени. Это значит, что задание волновой функции для момента времени , определяет ее значение для момента времени большего , т. е. . Другими словами, в квантовой механике в соответствии с требованием принципа причинности состояние микрообъекта, определенное в некоторый момент времени , однозначно предопределяет его дальнейшее состояние. К микрообъектам нельзя применять принцип причинности в форме, заимствованной из классической механики и основанной на применении понятий координат и импульсов, ибо особая природа микрообъектов этого не допускает. Принцип причинности здесь имеет вероятностный характер. Вероятностное (статистическое) истолкование волн де Бройля и соотношения неопределенностей указывают, что уравнение движения в квантовой механике должно быть таким, чтобы оно позволяло объяснить наблюдаемые на опыте волновые свойства частиц. Поскольку положение частицы в пространстве в данный момент времени определяется в квантовой механике заданием волновой функции , точнее величиной ,

определяющей лишь вероятность нахождения частицы в точке


х, у, z в момент времени t, основное уравнение квантовой механики должно быть уравнением относительно функции (х, у, z, t). Далее, это уравнение должно быть волновым уравнением, ибо из него должны получить свое объяснение эксперименты по дифракции микрочастиц, указывающие на их волновую природу. Основное уравнение нерелятивистской (при скоростях частиц значительно меньших скоростей света) квантовой механики было найдено в 1926 г. Э. Шредингером. Как и уравнения движения Ньютона, лежащие в основе классической физики и поэтому невыводимые, уравнение Шредингера постулируется. Справедливость уравнения Шредингера доказывается тем, что выводы квантовой физики, полученные с помощью этого уравнения в атомной и ядерной физике, находятся в хорошем согласии с опытом. Значение уравнения Шредингера заключается не только в том, что его решение дает соответствующее опыту статистическое распределение частиц, но и в том, что из уравнения Шредингера совместно с условиями, налагаемыми на волновую функцию, непосредственно вытекают правила квантования энергии. Важнейший философский вывод из квантовой механики заключается в принципиальной неопределенности результатов измерения и, следовательно, невозможности точного предвидения будущего.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)