|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Использование интегрирующего множителяЧисловые ряды. Сходимость ряда. Необходимый признак сходимости ряда. Сумма числового ряда определяется как предел, к которому стремятся суммы первых n слагаемых ряда, когда n неограниченно растёт. Если такой предел существует и конечен, то говорят, что ряд сходится, в противном случае — что он расходится[1]. Элементы ряда представляют собой комплексные числа (в частности, вещественные). Пусть — числовой ряд. Число называется n -ой частичной суммой ряда . Сумма (числового) ряда — это предел частичных сумм , если он существует и конечен. Таким образом, если существует число , то в этом случае пишут . Такой ряд называется сходящимся. Если предел частичных сумм не существует или бесконечен, то ряд называется расходящимся. Свойство 1. Если ряд (1.1) сходится и его сумма равна S, то ряд (1.2) где c — произвольное число, также сходится и его сумма равна cS. Если же ряд (1.1) расходится и с ≠ 0, то ряд (1.2) расходится. Свойство 2. Если сходится ряд (1.1) и сходится ряд , а их суммы равны и соответственно, то сходятся и ряды , причём сумма каждого равна соответственно . Ряд может сходиться лишь в том случае, когда член (общий член ряда) стремится к нулю: Это необходимый признак сходимости ряда (но не достаточный!). Если же общий член ряда не стремится к нулю — это достаточный признак расходимости. Линейные ДУ 1-го порядка Дифференциальное уравнение вида где a (x) и b (x) − непрерывные функции x, называтся линейным неоднородным дифференциальным уравнением первого порядка. Рассмотрим два метода решения указанных уравнений:
Использование интегрирующего множителя Если линейное дифференциальное уравнение записано в стандартной форме: то интегрирующий множитель определяется формулой: Умножение левой части уравнения на интегрирующий множитель u (x) преобразует ее в производную произведения y (x) u (x). Общее решение диффференциального уравнения выражается в виде: где C − произвольная постоянная. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |