|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Правило трех сигмВ теории вероятностей квадратичное отклонение σx случайной величины x (от ее математического ожидания) определяется как квадратный корень из дисперсии Dx и называют также стандартным отклонением величины x. Для любой случайной величины x с математическим ожиданием mx и квадратичным отклонением σx вероятность отклонения x от mx, больших по абсолютной величине k·σx, k > 0, не превосходит 1/k2 (неравенство Чебышева). В случае нормального распределения указанная вероятность при k = 3 равна 0.0027. В практических задачах, приводящих к нормальному распределению, чаще всего пренебрегают возможностью отклонения от среднего, большего 3·σx.
18. Закон распределения Пуассона. Функция надежности. Интенсивность отказов. Показательный закон. Распределение Пуассона — это частный случай биномиального распределения (при n >> 0 и при p –> 0 (редкие события)). Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения: где a = n · p — параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Пусть элемент (то есть некоторое устройство) начинает работать в момент времени t0 = 0 и должен проработать в течение периода времени t. Обозначим за Т непрерывную случайную величину — время безотказной работы элемента, тогда функция F (t) = p (T > t) определяет вероятность отказа за время t. Следовательно, вероятность безотказной работы за это же время равна R (t) = p (T > t) = 1 — F (t). Эта функция называется функцией надежности. 19. Центральная предельная теорема.
Центральная Предельная Теорема 1 Пусть -- последовательность независимых одинаково распределенных с.в. с конечной дисперсией. Обозначим и . Тогда где -- функция распределения стандартного нормального закона.
20. Закон Больших чисел.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.) |