АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Цветовая модель HSB

Читайте также:
  1. C) екі факторлы модель
  2. GAP модель: (модель разрывов)
  3. Автокорреляция в остатках. Модель Дарбина – Уотсона
  4. Автономні інвестиції. Чинники автономних інвестицій: технічний прогрес, рівень забезпеченості основним капіталом, податки на підприємців, ділові очікування. Модель акселератора.
  5. Аддитивная модель временного ряда
  6. Академіна модель освіти
  7. Американская модель
  8. Американская модель управления.
  9. Анализ деловой активности предприятия. Факторная модель Дюпон.
  10. Базовая модель экономического равновесия и механизм его восстановления
  11. Безработное населенние. Уровень безработицы. Основные формы безработицы. Закон Ойкена. Хистерезис как модель объяснения перманентной и длительной безработицы.
  12. Бел модель перехода к рынку и ее основные черты. Гос-ые программы соц-эконом развития.

По сути, цветовая модель HSB использует тот же набор основных цветов.

Некоторые графические редакторы позволяют работать с цветовой моделью HSB. Если цветовая модель RGB наиболее удобна для компьютера, а цветовая модель CMYK — для типографий, то цветовая модель HSB наиболее удобна для человека. Цветовая модель HSB проста и интуитивно понятна.

В цветовой модели HSB тоже три компонента: оттенок цвета (Hue), насыщенность цвета (Saturation) и яркость цвета (Brightness). Регулируя эти три компонента, можно получить столь же много произвольных цветов, как и при работе с другими цветовыми моделями.

Цветовая модель HSB удобна для применения в тех графических редакторах, которые ориентированы не на обработку готовых изображений, а на их создание своими руками. Существуют такие программы, которые позволяют имитировать различные инструменты художника (кисти, перья, фломастеры, карандаши), материалы красок (акварель, гуашь, масло, тушь, уголь, пастель) и материалы полотна (холст, картон, рисовая бумага и пр.). Создавая собственное художественное произведение, удобно работать в цветовой модели HSB, а по окончании работы его можно преобразовать в цветовую модель RGB или CMYK, в зависимости от того, будет ли оно использоваться как экранная или печатная иллюстрация.

Значение цвета выбирается как вектор, выходящий из центра окружности. Точка в центре соответствует белому (нейтральному) цвету, а точки по периметру — чистым цветам. Направление вектора определяет цветовой оттенок и задается в цветовой модели HSB в угловых градусах. Длина вектора определяет насыщенность цвета. Яркость цвета задают на отдельной оси, нулевая точка которой имеет черный цвет.
Векторная графика (vector graphics) — вид компьютерной графики, используемой в приложениях для рисования. В отличие от растровой графики позволяет пользователю создавать и модифицировать исходные изобразительные образы при подготовке рисунков, технических чертежей и диаграмм путем их вращения, увеличения или уменьшения, растягивания. Графические образы создаются и хранятся в памяти ЭВМ в виде формул, описывающих различные геометрические фигуры, которые являются компонентами изображения. Помимо данных, описывающих изображение, векторные файлы содержат «заголовок», где отражается общая для чтения файла информация, и «палитру», в которой помещаются сведения о цвете всех (в том числе наименьших) объектов изображения.
Сжатие информации - проблема, имеющая достаточно давнюю историю, гораздо более давнюю, нежели история развития вычислительной техники, которая (история) обычно шла параллельно с историей развития проблемы кодирования и шифровки информации.

Все алгоритмы сжатия оперируют входным потоком информации, минимальной единицей которой является бит, а максимальной - несколько бит, байт или несколько байт.

Целью процесса сжатия, как правило, есть получение более компактного выходного потока информационных единиц из некоторого изначально некомпактного входного потока при помощи некоторого их преобразования.

 

Основными техническими характеристиками процессов сжатия и результатов их работы являются:
степень сжатия ( compress rating) или отношение (ratio) объемов исходного и результирующего потоков;
скорость сжатия - время, затрачиваемое на сжатие некоторого объема информации входного потока, до получения из него эквивалентного выходного потока;
качество сжатия - величина, показывающая на сколько сильно упакован выходной поток, при помощи применения к нему повторного сжатия по этому же или иному алгоритму.

 

Все способы сжатия можно разделить на две категории: обратимое и необратимое сжатие.

Под необратимым сжатием подразумевают такое преобразование входного потока данных, при котором выходной поток, основанный на определенном формате информации, представляет, с некоторой точки зрения, достаточно похожий по внешним характеристикам на входной поток объект, однако отличается от него объемом.

Степень сходства входного и выходного потоков определяется степенью соответствия некоторых свойств объекта (т.е. сжатой и несжатой информации в соответствии с некоторым определенным форматом данных), представляемого данным потоком информации.

Такие подходы и алгоритмы используются для сжатия, например данных растровых графических файлов с низкой степенью повторяемости байтов в потоке. При таком подходе используется свойство структуры формата графического файла и возможность представить графическую картинку приблизительно схожую по качеству отображения (для восприятия человеческим глазом) несколькими (а точнее n) способами. Поэтому, кроме степени или величины сжатия, в таких алгоритмах возникает понятие качества, т.к. исходное изображение в процессе сжатия изменяется, то под качеством можно понимать степень соответствия исходного и результирующего изображения, оцениваемая субъективно, исходя из формата информации. Для графических файлов такое соответствие определяется визуально, хотя имеются и соответствующие интеллектуальные алгоритмы и программы. Необратимое сжатие невозможно применять в областях, в которых необходимо иметь точное соответствие информационной структуры входного и выходного потоков. Данный подход реализован в популярных форматах представления видео и фото информации, известных как JPEG и JFIF алгоритмы и JPG и JIF форматы файлов.

Обратимое сжатие всегда приводит к снижению объема выходного потока информации без изменения его информативности, т.е. - без потери информационной структуры.


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)