|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Корреляционная связь. Вычисление коэффициента корреляции. Вычисление коэффициента корреляции для малочисленных выборокКорреля́ция(от лат. correlatio), (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи. Например, рассматривая пожары в конкретном городе, можно выявить весьма высокую корреляцию между ущербом, который нанес пожар, и количеством пожарных, участвовавших в ликвидации пожара, причём эта корреляция будет положительной. Из этого, однако, не следует вывод «бо́льшее количество пожарных приводит к бо́льшему ущербу», и тем более не имеет смысла попытка минимизировать ущерб от пожаров путем ликвидации пожарных бригад.[5]В то же время, отсутствие корреляции между двумя величинами ещё не значит, что между ними нет никакой связи. Важной характеристикой совместного распределения двух случайных величин является ковариация (или корреляционный момент). Ковариация являетcя совместным центральным моментом второго порядка.[6] Ковариация определяется как математическое ожидание произведения отклонений случайных величин Для устранения недостатка ковариации был введён линейный коэффициент корреляции (или коэффициент корреляции Пирсона) 8. Генеральная и выборочная совокупности. Эмпирическая функция распределения. Полигон и гистограмма.
1.Генеральная (включает все единицы наблюдения, которые могут быть к ней отнесены в соответствии с целью исследования.) Генеральная совокупность может рассматриваться не только в пределах конкретных производств или территориальных границ, но также и ограничиваться другими признаками (пол, возраст) и их сочетанием. Таким образом, в зависимости от цели исследования и его задач изменяются границы генеральной совокупности, для этого используют основные признаки, ее ограничивающие. 1. Выборочная (часть генеральной совокупности, которая должна быть репрезентативной по отношению к генеральной и наиболее полно отражать ее свойства). На основе анализа выборочной совокупности можно получить достаточно полное представление о закономерностях, присущих всей генеральной совокупности. Выборочная совокупность должна быть репрезентативной, т. е. в отобранной части должны быть представлены все элементы и в таком же соотношении, как в генеральной совокупности. Иными словами, выборочная совокупность должна отражать свойства генеральной совокупности, т. е. правильно ее представлять Репрезентативность должна быть количественной и качественной.
Количественная - основана на законе больших чисел и означает достаточную численность элементов выборочной совокупности, расчитываемую по специальным формулам и таблицам.
Качественная - основана на законе вероятности и означает соотвестиве (однотипность) призщнаков, характеризующих элементы выборочной совокупности по отношению к генеральной. Эмпирическая функция распределения — Выборочная (эмпирическая) функция распределения в математической статистике это приближение теоретической функции распределения, построенное с помощью выборки из него. Полигоном частот называют ломанную, отрезки которой соединяют точки (x1; n1), (x2; n2),..., (xk; nk). Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат - соответствующие им частоты ni. Точки (xi; ni) соединяют отрезками прямых и получают полигон частот В случае непрерывного признака целесообразно строить гистограмму. Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению ni / h (плотность частоты). Полигон частот Гистограмма относительных частот Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |