|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Автокорреляционная функция. Коррелограмма
При наличии во временном ряду тенденции и циклических изменений значения последующего уровня ряда зависят от предыдущих. Зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью индекса корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Пусть задан временный ряд: у ,у ,…у и пусть имеет место линейная корреляция между yt и yt-1. Определим коэффициент корреляции между рядами уt и уt-1. Для этого воспользуемся следующей формулой: . Пологая xj = уt-1, yj = уt-1, получим (5.1)
где ; (5.2) Эту величину называют коэффициентом автокорреляции уровней ряда 1-го порядка. Аналогично определяются коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции 2-го порядка характеризует тесноту связи между уровнями у и у и определяется по формуле: (5.3) где ; . (5.4) Порядок уровня ряда автокорреляции называют лагом. Для формулы (5.1) лаг равен единице, для (5.3) –двум. Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда (АКФ). График зависимости ее значений от величины лага называется коррелограмой. АКФ и коррелограмма позволяют определить лаг, при котором автокорреляция наиболее высокая, а, следовательно, и лаг, при котором связь между текущим и предыдущим уровнями ряда наиболее тесная, т.е. с их помощью можно выявить структуру ряда. Коэффициент автокорреляции и АКФ целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической компоненты: если наиболее высоким оказался коэффициент автокорреляции 1-го порядка, то исследуемый ряд содержит только тенденцию; если наиболее высоким оказался коэффициент автокорреляции к-го порядка, то ряд содержит циклические колебания с периодичностью в к-моментов времени; если, ни один из коэффициентов не является значимым, то можно сделать одно из двух предположений, относительно структуры этого ряда: либо ряд не содержит тенденции и циклических изменений и имеет структуру, сходную со структурой ряда, изображенного на рис.5.1в, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |