|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Характеристика моделей с распределенным лагом и моделей авторегрессии
Многие экономические процессы имеют временной характер изменения. Поэтому в эконометрике рассматриваются так называемые динамические модели. Эконометрическая модель является динамической, если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так и к предыдущим моментам времени. Выделяют два основных типа динамических эконометрических моделей. К моделям 1-го типа относятся модели авторегрессии и модели с распределенным лагом, в которых значения переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели 2-го типа учитывают динамическую информацию в неявном виде. В этих моделях присутствуют переменные, характеризующие ожидаемый или желаемый уровень результата, или одного из факторов в момент времени t. Этот уровень считается неизвестным, и определяются экономическими единицами с учетом информации, которой они располагают в момент (t -1). В зависимости от способа определения ожидаемых значений показателей различают модели неполной корректировки, адаптивных ожиданий и рациональных ожиданий. Оценка параметров этих моделей сводится к оценке параметров моделей авторегрессии. При исследовании экономических процессов нередко приходится моделировать ситуации, когда значение результативного признака в момент времени t формируется под воздействием ряда факторов, действовавших в прошлые моменты времени (t -1),(t -2),..(t - k). Например, выручка от реализации и прибыль компании текущего периода зависят от расходов на рекламу или проведенных маркетинговых исследований, сделанных компаний в предшествующие моменты времени. Величину k, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самых факторных переменных, сдвинутые на один или более моментов времени, - лаговыми переменными. Основная проблема экономической политики как на макро-, так и на микроуровне это решение обратного типа задач, т.е. задач, определяющих, какое воздействие окажут значения управляемых переменных текущего периода на будущие значения экономических показателей. Например, как повлияют инвестиции в промышленность на валовую добавленную стоимость этой отрасли экономики будущих периодов. Модели экономических процессов, содержащие не только текущие, но и лаговые значения факторных переменных называются моделями с распределенным лагом. Например, модель
является моделью с распределенным лагом. Если на величину зависимой переменной текущего периода (уt) оказывают влияние ее значения в прошлые моменты времени (yt-1, yt-2,…), то эти процессы обычно описываются с помощью моделей авторегрессии. Например,
Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику: оценка параметров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК и требует специальных статистических методов; приходится решать проблему выбора оптимальной величины лага и определения его структуры; между моделями с распределенным лагом и моделями авторегрессии существует определенная взаимосвязь, и в некоторых случаях необходимо осуществлять переход от одного типа моделей к другому. Рассмотрим модель с распределенным лагом в ее общем виде:
Коэффициент В момент (t +1) совокупное воздействие факторной переменной х Введем обозначение
Величину b называют долгосрочным мультипликатором. Он показывает абсолютное изменение в долгосрочном периоде t + Положим
Полученные величины называются относительными коэффициентами модели с распределенным лагом. Очевидно, что если 0< В этом случае относительные коэффициенты Средний лаг определяется по формуле Медианный лаг - это величина лага, для которого Это тот период времени, в течение которого будет реализована половина общего воздействия фактора на результат. Рассмотрим теперь модель авторегрессии:
Параметров b Долгосрочный мультипликатор в модели авторегрессии рассчитывается как сумма как сумма краткосрочного и промежуточных мультипликаторов: Обычно во всех моделях авторегрессии вводится условие стабильности, состоящее в том, что коэффициент регрессии при переменной Следовательно, можно написать:
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.208 сек.) |