АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Выбор вида модели и оценка ее параметров

Читайте также:
  1. I. Расчет параметров железнодорожного транспорта
  2. II. Оценка эффективности инвестиционного менеджмента.
  3. II. Право на фабричные рисунки и модели (прикладное искусство), на товарные знаки и фирму
  4. II. Расчет параметров автомобильного транспорта.
  5. III. Расчет параметров конвейерного транспорта.
  6. IV.Оценка эффективности деятельности структурного подразделения организации
  7. А. Порядок работы при выборке по НКРЯ
  8. Абсолютная и относительная ограниченность ресурсов и проблема выбора. Кривая производственных возможностей
  9. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  10. Аддитивная и мульпликативная модели временного ряда
  11. Адекватность трендовой модели
  12. Алгоритм выбора антибиотиков при остром бронхите

Для отображения зависимости переменных могут использоваться показательная, параболическая и многие другие функции. Однако в практической работе наибольшее распространение получили модели линейной взаимосвязи, т.е. когда факторы входят в модель линейно.

Линейная модель множественной регрессии имеет вид:

Yi= а0 + a1xi1 + а2хiа +... + аmхim + εi. (2.1.3)

Анализ уравнения (4.1.3) и методика определения параметров стано­вятся более наглядными, а расчетные процедуры существенно упрощают­ся, если воспользоваться матричной формой записи уравнения (2.1.4):

Y=Xα+ε. (2.1.4)

Здесь У - вектор зависимой переменной размерности nx1, представляющий собой n наблюдений значений уi, Х - матрица независимых переменных, элементы которой суть n х m наблюдения значений т неза­висимых переменных Х1 X2, Х3,..., Хm размерность матрицы Х равна m х 1; - α - подлежащий оцениванию вектор неизвестных параметров размерности т х 1; ε - вектор случайных отклонений (возмущений) раз­мерности n х 1. Таким образом,

Уравнение (4.1.4) содержит значения неизвестных параметров α1, α 2, α m. Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид

Y=X α +e= +e, (2.1.5)

где α - вектор оценок параметров; е - вектор «оцененных» отклонений регрессии, остатки регрессии е = y - Х α; - оценка значений Y равная Х α.

Для оценивания неизвестного вектора параметров к воспользуемся методом наименьших квадратов (МНК). Формула для вычисления параметров регрессионного уравнения имеет вид:

Α=(XTX)-1XTY. (2.1.6)

Рассмотрим случай зависимости переменной Y от одного фактора X. Мы хотим подобрать уравнения.

Используя (4.1.6), можно получить следующие выражения для вычисления α1 и α0:

(2.1.8)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)