|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Средняя арифметическаяСредняя арифметическая представляет собой как бы точку равновесия вариационного ряда, отклонения от которой в сторону увеличения или уменьшения признака взаимно уравновешиваются. Средняя арифметическая показывает, какую величину признака имели бы особи данной группы, если бы эта величина была у всех одинаковой. Простейший метод вычисления средней арифметической величины для небольшой выборки (n<30) – это простое суммирование, т.е. нахождение суммы вариант выборки и деление ее на объем выборки. Среднюю арифметическую обозначают Хср или М. где X – величина варьирующего признака; n – объем выборки; S – знак суммирования. где А – условное среднее значение нулевого класса; р – частоты; а – условное отклонение; n – объем выборки; i – величина классового промежутка. Задание. Пользуясь вариационным рядом, представленным в таблице 1, составить таблицу 2 для вычисления средней арифметической косвенным методом. Распределение вариант по весу Таблица 1
Таблица 2 Рабочая таблица для вычисления средней арифметической методом условных отклонений
Для вычисления средней арифметической необходимо: 1 Найти в построенном вариационном ряду условный средний класс. В качестве условного среднего класса рекомендуется брать класс, который занимает центральное место в данном вариационном ряду и имеет наибольшее по сравнению с другими классами значение частот (р). В нашем примере условным средним классом будет четвертый класс с наибольшей встречаемостью вариант (р = 14) и варьированием веса в пределах 52 – 54 кг. 2 Выделить условный средний класс линиями и принять за нулевой. 3 Вычислить условное среднее значение нулевого класса. Его обозначают буквой А. В нашем примере
4 5 Найти произведение частоты на условное отклонение для каждого класса (ра) и заполнить графу. 6 Найти сумму частот (Sр = n = 50). 7 Вычислить сумму произведений частот на условное отклонение. Она равна: Sра = –25+34 =9. 8 Вычислить среднее арифметическое по формуле: i – величина классового промежутка.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |