|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ТЕОРЕМА(1) Кронекера-Капелли
Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы. Теорема(2). Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение. Теорема(3). Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений. Исследование однородных систем: Однородная система всегда совместна. Теорема: Для того чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных. Теорема: Для того чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ее определитель был равен нулю.
Критерии совместности СЛАУ Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений: Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных Доказательство (условия совместности системы) Необходимость Пусть система совместна. Тогда существуют числа x1, xn такие, что. b=x1a1+…xnan Следовательно, столбец b является линейной комбинацией столбцов a1….an матрицы A. Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что rangA=rangB. Достаточность Пусть rangA=rangB=r. Возьмем в матрице A какой-нибудь базисный минор. Так как rangB=r, то он же и будет базисным минором и матрицы B. Тогда согласно теореме о базисном миноре последний столбец матрицы B будет линейной комбинацией базисных столбцов, то есть столбцов матрицы A. Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы A. Методы решения СЛАУ М-д Крамера Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно) Метод Крамера основывается на двух свойствах определителя матрицы:Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю с определителем матрицы системы D, отличным от нуля, решение записывается в виде (i-ый столбец матрицы системы заменяется столбцом свободных членов).
В этой форме формула Крамера справедлива без предположения, что D отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2…bn и x1,x2…..xn, либо набор c1,c2…..cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |