|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Первый закон НьютонаИнерциальной называется та система отсчёта, относительно которой любая, изолированная от внешних воздействий, материальная точка либо покоится, либо сохраняет состояние равномерного прямолинейного движения. Первый закон Ньютона гласит:
По сути, этот закон постулирует инерцию тел, то есть их свойство сопротивляться изменению их текущего состояния. [править] Второй закон Ньютона Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как мерило проявления инерции материальной точки в выбранной инерциальной системе отсчёта (ИСО). Второй закон Ньютона утверждает, что
где — ускорение материальной точки; Или в более известном виде: В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:
где — скорость точки; t — время; Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается: или Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности. Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО. [править] Третий закон Ньютона Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются. Сам закон:
Си́ла — векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нем деформаций.[1] Сила, как векторная величина, характеризуется модулем и направлением. Импульс (количество движения) — аддитивный интеграл движения механической системы; соответствующий закон сохранения связан с фундаментальной симметрией — однородностью пространства. Ма́сса — одна из важнейших физических величин. Первоначально (XVII–XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства — вес. В современной физике понятие «количество вещества» имеет другой смысл, а под массой понимают два различных свойства физического объекта:
№2 закон возрастания энтропии, который можно сформулировать следующим образом: В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс. Флуктуации — случайные отклонения от среднего значения физических величин, характеризующих систему из большого числа частиц; вызываются тепловым движением частиц или квантовомеханическими эффектами. Примером термодинамических флуктуаций являются флуктуации плотности вещества в окрестностях критических точек, приводящих, в частности, к сильному рассеянию света веществом и потери прозрачности.
Билет 7
№1
№2 В статистической термодинамике, уравнение Больцмана связывает энтропию идеального газа и термодинамическую вероятность — величину , которая равна количеству микросостояний, соответствующих данному макросостоянию системы: где — постоянная Больцмана, равная [джоуль/Кельвин]. Иначе говоря, формула Больцмана показывает отношение между энтропией и числом способов конструирования данной системы из атомов или молекул. В 1934 швейцарский физический химик Вернер Кун успешно получил тепловое уравнение состояния для молекул каучука, используя формулу Больцмана, которая с тех пор стала известной, как модель энтропии каучука.
Билет 8 №1. В механике рассматривают два из четырех известных в физике типа взаимодействий: гравитационные и электромагнитные. №2 СТАТИСТИЧЕСКИЙ ВЕС, в квантовой статистике - число различных квантовых состояний физической системы с данной энергией (или с энергией в данном узком интервале); в классической статистической физике - величина элемента объема в фазовом пространстве системы.
Билет 9 №1 Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика). №2 Центр масс (центр ине́рции, барице́нтр) в механике — это геометрическая точка, характеризующая движение тела или системы частиц как целого. Положение центра масс (центра инерции) в классической механике определяется следующим образом: где — радиус-вектор центра масс, — радиус-вектор i -й точки системы, — масса i -й точки. Для случая непрерывного распределения масс: где: — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.
№2 Барометрическая формула — зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид: где p — давление газа в слое, расположенном на высоте h, p 0 — давление на нулевом уровне (h = h 0), M — молярная масса газа, R — газовая постоянная, T — абсолютная температура. Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону: где M — молярная масса газа, R — газовая постоянная. Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла — Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.
Билет 11 №1 Предел, к которому стремится сумма всех элементарных работ, когда мелкость | τ | разбиения τ стремится к нулю, называется работой силы F вдоль кривой G. Таким образом, если обозначить эту работу буквой W, то, в силу данного определения, , следовательно, 1) . Если положение точки на траектории ее движения описывается с помощью какого-либо другого параметра t (например, времени) и если величина пройденного пути s = s (t), является непрерывно дифференцируемой функцией, то из формулы 1) получим
Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Эффективная мощность, мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу. Различают полезную, полную и номинальную Э. м. двигателя. Полезной называют Э. м. двигателя за вычетом затрат мощности на приведение в действие вспомогательных агрегатов или механизмов, необходимых для его работы, но имеющих отдельный привод (не от двигателя непосредственно). Полная Э. м. — мощность двигателя без вычета указанных затрат. Номинальная Э. м., или просто номинальная мощность, — Э. м., гарантированная заводом-изготовителем для определённых условий работы. В зависимости от типа и назначения двигателя устанавливаются Э. м., регламентируемые стандартами или техническими условиями (например, наибольшая мощность судового реверсивного двигателя при определённой частоте вращения коленчатого вала в случае заднего хода судна — так называемая мощность заднего хода, наибольшая мощность авиационного двигателя при минимальном удельном расходе топлива — так называемая крейсерская мощность и т. п.). Э. м. зависит от форсирования (интенсификации) рабочего процесса, размеров и механического кпд двигателя.[1]
Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ - Джоуль Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.) |