Поиск наибольшего и наименьшего значения непрерывных функций на замкнутом промежутке
Теорема: Первый достаточный признак экстремума функции.
Если f’(x)>0 на интервале (x0-б,х0) и f’(x)<0 на интервале (х0,x0+б) т.е. меняет знак с плюса на минус при переходе на точку х0, т.е. х0 – точка максимума f(x), а если же меняет знак с минуса на плюс, то х0 – точка минимума.
Доказательство:
Теорема: Второй достаточный признак максимума функции.
Если f(x) имеет непрерывную вторую производную в окрестности точки х0, и:
1). f’(x0)=0 2). f’’(x0)<0
то х0 точка максимума (аналогично, если f’’(x0)<0, то х0 – точка минимума)
Док-во: Возьмем окрестность, где вторая производная сохраняет знак и запишем формулу Тейлора 1-го порядка для х из данной окрестности.
1 | 2 | 3 | 4 | 5 | 6 | Поиск по сайту:
|