АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Формула для вычисления расстояния от точки до плоскости

Читайте также:
  1. IV. ГРУППА УПРАЖНЕНИЙ – ИЗМЕНЕНИЕ ФОКУСНОГО РАССТОЯНИЯ
  2. А — одностороннее боковое освещение; б — двустороннее боковое освещение; в — верхнее освещение; г — комбинированное освещение: 1 — уровень рабочей плоскости
  3. А. Механизмы творчества с точки зрения З. Фрейда и его последователей
  4. Адаптивные программы вычисления определенных интегралов
  5. Алгоритм вычисления кодов Шеннона — Фано
  6. Алгоритм вычисления произведения
  7. Алгоритм Гаусса вычисления ранга матрицы
  8. Анализ факторов изменения точки безубыточности и зоны безопасности предприятия
  9. Антропометрические точки на голове
  10. Антропометрические точки на черепе
  11. Б. Механизмы творчества с точки зрения М. Кlein
  12. Барометрическая формула

Если задано уравнение плоскости Ax + By + Cz + D = 0, то расстояние от точки M(Mx, My, Mz) до плоскости можно найти, используя следующую формулу:

 

d = |A·Mx + B·My + C·Mz + D|
√A2 + B2 + C2

 

11) Направляющий вектор произвольной прямой в дальнейшем обозначается буквой , его координаты - буквами l, m, n:

.

Если известна одна точка прямой и направляющий вектор , то прямая может быть определена (двумя) уравнениями вида

.

Канонические уравнения прямой, проходящей через данные точки и имеют вид

. (2)

Обознчим буквой t каждое из равных отношений в канонических уравнениях (1); получим

.

Отсюда

, , . (3)

Это - параметрические уравнения прямой, проходящей через точку в направлении вектора


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)