|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Геометрический смысл приращенияПосмотрите на следующий рисунок. Как видите, приращение показывает изменение ординаты и абсциссы точки. А отношение приращения функции к приращению аргумента определяет угол наклона секущей, проходящей через начальное и конечное положение точки. 32)Введем правило для нахождения производной обратной функции. Теорема. Пусть функция определена на промежутке Х, непрерывна, монотонна (возрастает или убывает) и дифференцируема на Х. Если ее производная в точке не равна нулю, то обратная функция имеет производную в точке , причем . (4.1) Доказательство. Функция определена, непрерывна и монотонна на промежутке Х, тогда она имеет обратную функцию , определенную, непрерывную и монотонную на промежутке Y. Если значение аргумента получает приращение , отличное от нуля, то в силу монотонности функции функция получает приращение и . В силу непрерывности функции : . Следовательно, Итак,
33) 34) Обратное преобразование можно выполнить далеко не всегда. Часто встречаются функции, заданные неявным уравнением, которые невозможно разрешить относительно переменной y. Например, для приведенных ниже функций невозможно получить зависимость y (x) в явном виде. Хорошая новость состоит в том, что для нахождения производной y' (x) неявно заданной функции нет необходимости преобразовывать ее в явную форму. Для этого, зная уравнение F (x, y) = 0, достаточно выполнить следующие действия: Сначала необходимо продифференцировать обе части уравнения по переменной x, предполагая, что y - это дифференцируемая функция x и используя правило вычисления производной от сложной функции. При этом производная нуля (в правой части) также будет равна нулю. Замечание: Если правая часть отлична от нуля, т.е. неявное уравнение имеет вид то дифференцируем левую и правую части уравнения.
35) Геометрический смысл дифференциала
На графике функции возьмем произвольную точку и дадим аргументу приращение . При этом функция получит приращение (на рисунке отрезок ). Проведем касательную к кривой в точке и обозначим угол ее наклона к оси через , тогда . Из треугольника находим , т.е. . Таким образом, дифференциал функции численно равен приращению ординаты касательной, проведенной к графику функции в данной точке, когда аргумент получает приращение . 36)Теорема (правило Лопиталя). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при x→а, причем
37) Теорема 17.1 (Теорема Ферма) Если функция имеет производную и в точке имеет экстремум, то значение производной в этой точке равно 0. Доказательство Пусть - точка минимума. Тогда при . Значение выражения . Значит, . Рассмотрим теперь , при этом также , и выражение . Значит, правая производная . По теореме 14.5 . Из ранее доказанного следует: . Теорема доказана.
Равность нулю производной - необходимое условие существования экстремума, но не достаточное. То есть производная может быть равной 0 и вне точки экстремума. Пример: , но точка 0 - не экстремум.
Теорема 17.2 (Теорема Ролля) Пусть: Функция непрерывна на отрезке : ; Для любого x из интервала существует производная: ; Значения функции на концах отрезка равны: . Тогда существует такое , что производная . Доказательство Функция непрерывна существуют . Если , то функция является константой, и ее производная в любой точке равна 0, т.е. теорема доказана. Если же , то оба значения не могут достигаться в концевых точках, т.к. и . Тогда хотя бы одно из них достигается во внутренней точке c, и, по теореме Ферма 17.1 38) 39,40) Точка называется точкой локального максимума функции , если существует такая окрестность этой точки, что для всех из этой окрестности выполняется неравенство: . Точка называется точкой локального минимума функции , если существует такая окрестность этой точки, что для всех из этой окрестности . (Необходимое условие экстремума) Если функция имеет экстремум в точке , то ее производная либо равна нулю, либо не существует. Точки, в которых производная равна нулю: , называются стационарными точками функции. Точки, в которых выполняется необходимое условие экстремума для непрерывной функции, называются критическими точками этой функции. То есть критические точки - это либо стационарные точки (решения уравнения ), либо это точки, в которых производная не существует. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |