|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линейные однородные дифференциальные уравнения с. постоянными коэффициентамипостоянными коэффициентами.
Решение дифференциального уравнения вида или, короче, будем искать в виде , где k = const. Т.к. то
При этом многочлен называется характеристическим многочленом дифференциального уравнения. Для того, чтобы функция являлась решением исходного дифференциального уравнения, необходимо и достаточно, чтобы т.е. Т.к. ekx ¹ 0, то - это уравнение называется характеристическим уравнением.
Как и любое алгебраическое уравнение степени n, характеристическое уравнение имеет n корней. Каждому корню характеристического уравнения ki соответствует решение дифференциального уравнения.
В зависимости от коэффициентов k характеристическое уравнение может иметь либо n различных действительных корней, либо среди действительных корней могут быть кратные корни, могут быть комплексно – сопряженные корни, как различные, так и кратные. Не будем подробно рассматривать каждый случай, а сформулируем общее правило нахождения решения линейного однородного дифференциального уравнения с постоянными коэффициентами.
1) Составляем характеристическое уравнение и находим его корни. 2) Находим частные решения дифференциального уравнения, причем: a) каждому действительному корню соответствует решение ekx; б) каждому действительному корню кратности m ставится в соответствие m решений: в) каждой паре комплексно – сопряженных корней характеристического уравнение ставится в соответствие два решения: и . г) каждой паре m – кратных комплексно – сопряженных корней характеристического уравнения ставится в соответствие 2 m решений: 3) Составляем линейную комбинацию найденных решений.
Эта линейная комбинация и будет являться общим решением исходного линейного однородного дифференциального уравнения с постоянными коэффициентами.
Пример. Решить уравнение .
Составим характеристическое уравнение: Общее решение имеет вид:
Пример. Решить уравнение
Это линейное однородное дифференциальное уравнение с переменными коэффициентами второго порядка. Для нахождения общего решения необходимо отыскать какое - либо частное решение. Таким частным решением будет являться функция
Исходное дифференциальное уравнение можно преобразовать:
Общее решение имеет вид: Окончательно:
Пример. Решить уравнение
Составим характеристическое уравнение:
Общее решение:
Пример. Решить уравнение
Характеристическое уравнение: Общее решение:
Пример. Решить уравнение
Характеристическое уравнение:
Общее решение:
Пример. Решить уравнение
Характеристическое уравнение: Общее решение:
Пример. Решить уравнение
Характеристическое уравнение: Общее решение:
Пример. Решить уравнение
Характеристическое уравнение: Общее решение:
Пример. Решить уравнение
Это уравнение не является линейным, следовательно, приведенный выше метод решения к нему не применим. Понизим порядок уравнения с помощью подстановки Тогда Окончательно получаем:
Это выражение будет общим решением исходного дифференциального уравнения. Полученное выше решение у1 = С1 получается из общего решения при С = 0.
Пример. Решить уравнение
Производим замену переменной: Общее решение:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |