АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Линейные однородные дифференциальные уравнения в частных

Читайте также:
  1. A) линейные
  2. V2: ДЕ 11 - Векторные пространства. Линейные операции над векторами
  3. V2: ДЕ 4 – Линейные отображения. Линейные операции над матрицами
  4. V2: ДЕ 5 - Линейные отображения. Умножение матриц
  5. V2: ДЕ 54 - Дифференциальные уравнения, допускающие понижение порядка
  6. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  7. V2: ДЕ 6 - Линейные отображения. Определители второго порядка
  8. V2: Применения уравнения Шредингера
  9. V2: Уравнения Максвелла
  10. VI Дифференциальные уравнения
  11. Абстрактные линейные системы
  12. Алгебраические уравнения

производных первого порядка.

 

Дифференциальное уравнение в частных производных первого порядка от функции можно в общем виде записать как

Линейное уравнение в частных производных имеет вид:

, (1)

где Xi – некоторые заданные функции.

 

Очевидно, что одним из решений такого уравнения будет функция u = C.

 

Рассмотрим систему уравнений:

(2)

или - такая система называется нормальной.

Общее решение этой системы имеет вид:

 

Если разрешить эти уравнения относительно постоянных С, получим:

Каждая из функций j является интегралом системы (2).

 

Теорема. Если - интеграл системы (2), то функция - решение уравнения (1).

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)