|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Электрический ток в полупроводникахПолупроводники занимают промежуточное место по электропроводности между проводниками и непроводниками электрического тока. К группе полупроводников относится гораздо больше веществ, чем к группам проводников и непроводников, взятых вместе. Наиболее характерными представителями полупроводников, нашедших практическое применение в технике, являются германий, кремний, селен, теллур, мышьяк, закись меди и огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры. Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами. У полупроводников концентрация носителей свободного заряда увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов.
При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название «дырок». При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного In и дырочного Ip токов: I = In + Ip. Концентрация электронов проводимости в полупроводнике равна концентрации дырок: nn = np. Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников. При наличии примесей электропроводимость полупроводников сильно изменяется. Например, добавка примесей фосфора в кристалл кремния в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков.
Различают два типа примесной проводимости – электронную и дырочную проводимости. Так при легировании четырех валентного германия (Ge) или кремния (Si) пятивалентным – фосфор (P), сурьма (Sb), мышьяк (As) в месте нахождения атома примеси появляется лишний свободный электрон. При этом примесь называют донорной.
В одном и том же образце полупроводникового материала один участок может обладать р - проводимостью, а другой n – проводимостью. Такой прибор называют полупроводниковым диодом. Приставка «ди» в слове «диод» означает «два», она указывает, что в приборе имеются две основные «детали», два тесно примыкающих один к другому полупроводниковых кристалла: один с р-проводимостью (это зона р), другой — с n - проводимостью (это зона п). Фактически же полупроводниковый диод — это один кристалл, в одну часть которого введена донорная примесь (зона п), в другую—акцепторная (зона р).
Теперь сменим полярность напряжения на диоде, осуществим, как принято говорить, его обратное включение — «плюс» батареи подключим к зоне п, «минус» — к зоне р. Свободные заряды оттянутся от границы, электроны отойдут к «плюсу», дырки — к «минусу» и в итоге pn - переход превратится в зону без свободных зарядов, в чистый изолятор. А значит, произойдет разрыв цепи, ток в ней прекратится. Hе большой обратный ток через диод все же будет идти. Потому что, кроме основных свободных зарядов (носителей заряда) — электронов, в зоне п,и дырок в зоне р — в каждой из зон есть еще и ничтожное количество зарядов обратного знака. Это собственные неосновные носители заряда, они существуют в любом полупроводнике, появляются в нем из-за тепловых движений атомов, именно они и создают обратный ток через диод. Зарядов этих сравнительно мало, и обратный ток во много раз меньше прямого. Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода. С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток. Часто ВАХ, для наглядности представляют в виде графиков.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |