|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Магнитное поле в веществеЭкспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Если два витка с токами поместить в какую-либо среду, то сила магнитного взаимодействия между токами изменяется. Этот опыт показывает, что индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме. Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью: Магнитные свойства веществ определяются магнитными свойствами атомов или элементарных частиц (электронов, протонов и нейтронов), входящих в состав атомов. Магнитные свойства веществ в основном определяются электронами, входящими в состав атомов. Одним из важнейших свойств электрона является наличие у него не только электрического, но и собственного магнитного поля. Собственное магнитное поле электрона называют спиновым (spin – вращение). Электрон создает магнитное поле также и за счет орбитального движения вокруг ядра, которое можно уподобить круговому микротоку. Вещества разнообразны по своим магнитным свойствам. Различают диамагнетики (m <1), парамагнетики (m >1) и ферромагнетики (m >> 1). Диамагнетики. У большинства атомов диамагнетиков нет собственного магнитного момента, его магнитный момент индуцирован внешним полем. Во внешнем поле атомы приобретают магнитные моменты, направленные противоположно внешнему полю (m <1). Диамагнетиками являются вода(μ–1 ≈ –9·10–6), мрамор, некоторые металлы, например золото, ртуть, медь (μ – 1 ≈ –3·10–6), висмут (μ – 1 ≈ –1,7·10–3), инертные газы. Парамагнетики. Молекулы парамагнетиков имеют отличные от нуля собственные магнитные моменты. В отсутствие магнитного поля эти моменты расположены хаотически, поэтому вектор намагничения равен нулю. При внесении парамагнетика в магнитное поле магнитные моменты отдельных атомов или молекул ориентируются вдоль линий В, так что собственное поле парамагнетика усиливает внешнее магнитное поле (m > 1). Парамагнетиками являются щелочные металлы, воздух, кислород, алюминий (μ–1 ≈ 2,1·10–5), платина, оксиды марганца, азота, хлористое железо (FeCl3) *μ – 1 ≈ 2,5·10–3) . Образцы из пара- и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному – парамагнетики втягиваются в область сильного поля, диамагнетики – выталкиваются. Парамагнетик (1) и диамагнетик (2) в неоднородном магнитном поле. Явление диамагнетизма было открыто М. Фарадеем (1845 г.). Вещества, способные сильно намагничиваться в магнитном поле, называются ферромагнетиками. Магнитная проницаемость ферромагнетиков по порядку величины лежит в пределах 102–105. Например, у стали μ ≈ 8000, у сплава железа с никелем магнитная проницаемость достигает значений 250000. К группе ферромагнетиков относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Поэтому вся эта группа получила название ферромагнетиков. Ферромагнетиками могут быть различные сплавы, содержащие ферромагнитные элементы. Широкое применение в технике получили керамические ферромагнитные материалы – ферриты. Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770 °C, у кобальта 1130 °C, у никеля 360°C. Ферромагнитные материалы делятся на две большие группы – на магнито-мягкие и магнито-жесткие материалы. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание (трансформаторы, электродвигатели и т. п.). Магнито-жесткие материалы сохраняют в значительной мере свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие метериалы используются в основном для изготовления постоянных магнитов. Характерной особенностью процесса намагничивания ферромагнетиков является так называетмый гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B 0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса. При наступает магнитное насыщение – намагниченность образца достигает максимального значения. Если теперь уменьшать магнитную индукцию B 0 внешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно B r. Остаточная намагниченность образцов позволяет создавать постоянные магниты. Для того чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести магнитную индукцию B 0 до значения – B 0c, которое принято называть коэрцитивной силой. Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рис. У магнито-мягких материалов значения коэрцитивной силы B 0c невелико – петля гистерезиса таких материалов достаточно «узкая». Материалы с большим значением коэрцитивной силы, то есть имеющие «широкую» петлю гистерезиса, относятся к магнито-жестким. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В результате взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка 10–2–10–4 см. Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит. В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл в среднем окажется ненамагниченным. При наложении внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. Намагничивание ферромагнитного образца. (1) B 0 = 0; (2) B 0 = B 01; (3) B 0 = B 02 > B 01. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |