|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Транспортная задача линейного программирования. Пусть имеется несколько пунктов отправления, в которых сосредоточены запасы какого-либо однородного товара в определенных количествахПусть имеется несколько пунктов отправления, в которых сосредоточены запасы какого-либо однородного товара в определенных количествах, несколько пунктов назначения, которые хотят получить этот товар в определенных количествах. Известно, что сумма заявок на получение груза из всех пунктов назначения равна сумме запасов товара, находящегося во всех пунктах отправления. Известна стоимость перевозки единицы товара от каждого пункта отправления до каждого пункта назначения. Требуется составить такой план перевозок, чтобы:
Математическая формулировка транспортной задачи Обозначим через xij количество товара, который перевозится из пункта отправления Ai.. в пункт назначения Bj…(i=1,…,m; j=1,…,n); ai- количество товара, сосредоточенного в пункте отправления Ai; bj- количество товара, заявленного в пункте назначения Bj. Первое содержательное ограничение: сумма товара, содержащегося во всех пунктах отправления, должна равняться сумме заявок на доставку данного товара, которые подали все пункты назначения. Второе содержательное ограничение: все товары, содержащиеся в каждом из пунктов отправления, должны быть вывезены, возможно, в различные пункты назначения. Тогда математическая постановка транспортной задачи состоит в определении минимального значения функции В этой задаче необходимо найти такую матрицу X - матрицу оптимальных перевозок, которая удовлетворяла бы построенной системе ограничений и доставляла бы минимум целевой функции. Важная особенность данной задачи – соблюдение баланса между количеством товара, которое хотят приобрести по заявкам все пункты назначения, и количеством груза, имеющегося во всех пунктах отправления. Такие транспортные задачи называются закрытыми (при несоблюдении баланса - открытыми). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |