|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Билет 27. Жорданов базис и жорданова матрица линейного оператора в комплексном пространствеМатрица размерности n вида l0 на главной диагонали, а 1 над ними называется жордановой клеткой n-ого порядка. Характеристический многочлен (l0 – l)^k, l0 – собственное значение, кратности n. Имеет один собственный вектор. Рассмотрим произвольное корневое подпространство. Для построение корневого подпространства надо найти момент стабилизации. Будем строить базис в обратном порядке. Построим векторы, дополняющие произвольный базис пространства перед стабилизацией, они будут корневыми векторами максимальной высоты и их количество – разность размерностей на последней и предпоследней высоте. Эти векторы линейно независимы над Nq-1. Помножим каждый из этих векторов на сдвинутый оператор и дополним систему из них и произвольный базис из Nq-2 до базиса Nq-1. Аналогично будем доходить до N1. Полученную за q шагов систему векторов будем называть жордановой лестницей. Т Построенная система векторов образует базис корневого подпространства (почти очевидно). Нумеровать вектора будем внутри столбца жордановой лестницы снизу вверх, а сами столбцы в произвольном порядке. Полученный базис будем называть (жордановым) каноническим базисом корневого подпространства. Матрица оператора на корневом подпр-ве в каноническом базисе представляет собой жорданову клетку (для одного столбца) [Jq(lj)] [ O ] Рассмотрев все столбцы жордановой лестницы получим матрицу Aj в каноническом базисе, всего клеток – сколько собственных векторов. |Jq1(lj) O| | Jq2(lj) | Aj = |……………………………….| |O Jqsj(lj)|
Докажем единственность (в плоть до порядка) разложения. Пусть оператор A|Klj имеет квазидиагональную форму в другом базисе. Перенумеруем базис в порядке убывания размеров жордановых клеток. Рассмотрим новую лестницу Жордана. Оболочка натянутая на нижние векторы в новой лестнице – собственное подпространство, те N1. Аналогично рассматриваем оболочки более высоких порядков. Получаем, что лестница не зависит от базиса. Жордановой матрицей называется квазидиагональная матрица с клетками Жордана на диагонали. Жордановым базисом называется базис пространства, в котором матрица оператора принимает жорданову нормальную форму. Т Пусть (1) A L(V, V) линейный оператор, действующий в комплексном пространстве, и его характеристический многочлен имеет вид f(l) = (l1 – l)^m1…(lp – l)^mp, тогда в пространстве существует базис, в котором матрица оператора имеет квазидиагональную форму, и на диагонали стоят выражения типа Aj (по теореме о сумме корневых подпространств и о квазидиагональном виде). Замечание: Жорданова форма обычно определена однозначно, вплоть до порядка следования клеток Жордана. Замечание: Для операторов простой структуры и только для них Жорданова форма совпадает с диагональной.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |