|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линейного программирования. Теорема (о выборе разрешающего элемента)Теорема (о выборе разрешающего элемента) Если в нескольких столбцах z-ой строке есть отрицательные элементы, то разрешающим столбцом нужно выбрать тот столбец у которого максимально произведение абсолютного значения коэффициента в z-ой строке и минимально симплексное отношение данном столбце. Доказательство:
Пусть разрешающим будет элемент . В результате шага модифицированных жордановых исключений свободным членом в z-строке будет число , равное .Поскольку и ,скобка в этом выражении всегда будет положительной. А так как значение функционала всегда равно свободному члену, эта скобка представляет собой тот добавок к функционалу, который получается в результате сделанного шага. Чем большее приращение будет получать функционал на каждом шаге, тем меньше потребуется шагов (т.е. вычислений) для достижения оптиума. Величина этого приращения зависит от абсолютной величины коэффициента и от величины наименьшего симплексного отношения . То есть разрешающим столбцом будет столбец, у которого максимально это произведение.
Пример: линейное программирование: Найдем максимум функции при ограничениях Решение: составим жорданову таблицу.
Поскольку в ней свободные члены положительны, план является опорным. Однако он не оптимален, так как коэффициенты z-строки отрицательны. Выбираем из них тот, у которого наибольшее произведение абсолютной величины и наименьшее симплексное отношение. Третий столбец считаем разрешающим, так как он имеет наибольшую абсолютную величину 8 и симплексные отношения: соответственно (, поэтому элемент 1 в третьим столбце будет разрешающим). Делаем шаг модифицированных жордановых исключений и приходим к следующей таблице.
Судя по коэффициентам z-строки, в полученной таблице оптимальное решение не достигнуто. Берём второй столбец с отрицательным коэффициентом в z-строке за разрешающий (разрешающей строкой может быть только первая). С найденным элементом 5 делаем следующий шаг.
В z-строке все коэффициенты положительны, план, получаемый приравниванием верхних переменных нулю, а боковых – свободным членам, оптимален. Выписываем из таблицы значения основных неизвестных: Максимальное значение функционала считаем в последней клетке таблицы:
В окончательной таблице все определители неотрицательны. Это говорит о том, что при значениях неизвестных функционал достигает максимума
Обычно предполагается, что на множестве планов задачи нет точек, в которых знаменатель целевой функции равен нулю. Без ограничения общности, можно считать, что . В задаче дробно-линейного программирования экстремум целевой функции достигается в вершине многогранника решений. Это сходство с линейным программированием позволяет решать дробно-линейные задачи методом Штифеля. Вычисления оформляются в виде жордановых таблиц. При этом для функционала отводятся две нижние строки: в первую из них записываем коэффициенты числителя, а во вторую – знаменателя. Исходной задаче соответствует таблица 1:
Табл. 1. Через yi обозначаются разности между правыми и левыми частями системы ограничений: yi = ai – ai 1 x 1 – ai 2 x 2 – ai 3 x 3 – … – ainxn ³ 0. Свободными переменными мы будем называть переменные, расположенные в верхней заглавной строке жордановой таблицы. Придавая свободным переменным нулевые значения, мы получим исходное базисное решение: . Данный вектор не может являться опорным планом, т.к. знаменатель целевого функционала на нем равен нулю (z 2 = 0). Поэтому среди свободных членов системы ограничений a 1,…, am обязательно есть отрицательные числа (иначе базисное решение было бы опорным планом). Шагами модифицированных жордановых исключений, точно так же, как при решении задачи линейного программирования (см. [1]), отыскиваем первоначальный план задачи. В результате k шагов мы приходим к таблице 2:
Табл. 2.
В таблице 2 все свободные члены bi неотрицательны, что обеспечивает неотрицательность базисных переменных x 1,…, ym. Кроме того (в силу положительности знаменателя целевой функции z 2 на множестве опорных планов). Первоначальным опорным планом является вектор с координатами . Значение целевой функции на первоначальном опорном плане равно . Заметим, что если на одном из шагов жордановых исключений какой-либо из свободных членов b i окажется отрицательным, а все остальные элементы i -й строки будут неотрицательными, то задача не будет иметь решения из-за отсутствия планов. Проследим за тем, как меняется целевая функция при переходе от одного опорного плана задачи к другому. Оказывается, знак разности между новым и старым значениями функции совпадает со знаком определителя . Если , то значение целевой функции при переходе к новому опорному плану увеличивается, а если , то – уменьшается. называются оценками свободных переменных. Предположим, что исходная задача дробно-линейного программирования являлась задачей на максимум. Если все определители , вычисленные по таблице 2, неотрицательны, то оптимальным является опорный план и . Если среди оценок свободных переменных есть отрицательные числа, например, (для некоторого j), то план не является оптимальным. Его можно улучшить, выбрав в качестве разрешающего столбца j -й столбец и перейти к плану . Т.к. многогранник решений содержит лишь конечное число опорных планов, то за конечное число шагов мы придем к оптимальному опорному плану. Этому процессу может помешать только неограниченность многогранника решений. В этом случае целевая функция может иметь так называемый асимптотический экстремум (в данном случае – максимум). Асимптотическим максимумом задачи дробно-линейного программирования называется точная верхняя грань целевой функции на множестве планов, которая не достигается ни на одном из планов. В том случае, когда задача имеет асимптотический максимум, в области планов всегда можно найти такой план (не опорный), на котором целевая функция принимает значение сколь угодно близкое к асимптотическому максимуму. Метод Штифеля позволяет находить не только максимум, но и асимптотический максимум задачи дробно-линейного программирования. Рассмотрим более подробно переход от плана к плану и выясним. Выбирая разрешающий элемент в j -м столбце, мы должны руководствоваться принципом минимального симплексного отношения. Т.е. разрешающий элемент в j -м столбце должен попасть в ту строку, для которой симплексное отношение положительно и минимально. Т.к. после нахождения первоначального опорного плана все правые части bi стали неотрицательными, то разрешающим элементом j -го столбца может быть один из его положительных элементов (). Если на каждом шаге этапа поиска оптимального опорного плана в выбранном разрешающем столбце присутствует (хотя бы один) положительный элемент , то такая задача имеет максимум (возможно, что не один). Однако, если на одном из шагов некоторая оценка меньше нуля, и при этом все элементы j -го столбца . Тогда в данном столбце, руководствуясь принципом минимального симплексного отношения, разрешающий элемент выбирать нельзя. Увеличивая значения свободной переменной xj от 0 и до (см. Табл. 2), мы все время остаемся в области планов. Это связано с тем, что увеличение переменной xj не вызывает изменения знака на минус ни у одной из базисных переменных. Обозначим через М предел, к которому, монотонно возрастая, стремится целевая функция при : . Это число является асимптотическим максимумом.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.) |