АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вычисление определителя и обратной матрицы

Читайте также:
  1. I. Определение ранга матрицы
  2. II. Умножение матрицы на число
  3. II. Элементарные преобразования. Эквивалентные матрицы.
  4. SWOT- анализ и составление матрицы.
  5. Автогенератор с емкостной обратной связью
  6. Алгоритм вычисления обратной матрицы.
  7. Алгоритм вычисления обратной матрицы.
  8. Алгоритм Гаусса вычисления ранга матрицы
  9. Алгоритм нахождения обратной матрицы
  10. Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.
  11. Б) Вычисление тригонометрических функций.
  12. Б) с помощью обратной матрицы.

Вычисление определителя матрицы является классическим примером задач, для решения которых важно найти эффективные алгоритмы.

При непосредственном раскрытии определителя квадратной матрицы n -го порядка надо найти сумму n! слагаемых, каждое из которых равно произведению n элементов матрицы, взятых по одному с каждого столбца и каждой строки, т.е. надо выполнить порядка n! n операций. Число операций для вычисления определителя 100-го порядка приблизительно равно 100!∙100 ≈ 100157,9∙100. Такое число операций не способен выполнить ни один из существующих суперкомпьютеров. Тем не менее, современные компьютерные программы вычисления определителей справляются с матрицами и более высокого порядка, используя экономичные алгоритмы. Одним из таких алгоритмов является метод Гаусса.

Если матрица приведена к диагональному или треугольному виду, то её определитель равен произведению диагональных элементов.

Для преобразования матрицы к треугольному виду можно применить метод Гаусса, что потребует порядка 2 n 3/3 операций. Для n = 100 имеем 2 n 3/3 ≈ 0,67∙106. На такой объем арифметических операций современный персональный компьютер тратит не более одной секунды.

Если внимательно проанализировать метод Гаусса, то можно увидеть, что он фактически позволяет одновременно с приведением матрицы коэффициентов к треугольному виду, вычислить определитель этой матрицы. Действительно, определитель матрицы коэффициентов системы уравнений (3.18) равен произведению диагональных элементов, т.е. равен единице. С другой стороны, если к любой строке матрицы прибавить другую строку, умноженную на число, то определитель не изменится. А если строку матрицы разделить на число, отличное от нуля, то определитель матрицы разделится на то же число. Отсюда следует, что в результате преобразований виду (3.18), определитель матрицы коэффициентов системы уравнений (3.9) изменился на множитель, который равен произведению ведущих элементов, т.е. мы получаем формулу для вычисления определителя

 

.

 

Метод Гаусса также эффективен и для вычисления обратной матрицы. Вычисление обратной матрицы можно рассматривать как частный случай решения совокупности систем линейных уравнений с одной и той же матрицей коэффициентов и разными правыми частями. В этом случае преобразования, которые применяются к столбцу b правых частей системы, нужно применить к нескольким столбцам правых частей.

Пример 3.8. Для заданной матрицы вычислить определитель и обратную матрицу.

 

.

 

Решение. Используем рабочий лист решения примера 3.3. Введем элементы данной матрицы в диапазоне A 2: D 5.

В ячейке G 17 вычислим произведение ведущих элементов (т.е. тех чисел, на которые делили строки), для этого введем формулу =A2*B7*C12*D17. В ячейку F 17 введем формулу =МОПРЕД(A2:D5) и убедимся в правильности результата. Получим значение –190.

Для вычисления обратной матрицы используем новый рабочий лист.

Рассмотрим расширенную матрицу

 

 

Мы должны преобразовать методом Гаусса исходную матрицу к единичной, тогда единичная матрица справа от вертикальной черты преобразуется к обратной матрице.

Прямой ход метода Гаусса.

0. Запишем элементы матрицы в диапазоне A 2: D 5 и элементы единичной матрицы в диапазоне E 2: H 5.

1. В ячейку A 7 вводим формулу =A2/$A2; выделим A 7 и протянем маркер заполнения до ячейки H 7.

Затем в ячейку A 8 вводим формулу =A3-A$7*$A3; выделим A 8 и протянем маркер заполнения до H 8.

Выделим строку A 8: H 8 и протянем маркером заполнения вниз до строки 10.

В ячейках A 7: HE 10 появятся следующие значения:

1,0000 1,2500 0,5000 0,2500 0,2500 0,0000 0,0000 0,0000
0,0000 1,2500 -2,5000 1,2500 -0,7500 1,0000 0,0000 0,0000
0,0000 0,7500 2,5000 3,7500 -0,2500 0,0000 1,0000 0,0000
0,0000 6,0000 2,0000 7,0000 0,0000 0,0000 0,0000 1,0000

 

2. Присвоим строке A 12: H 12 значения строки A 7: H 7:

Выделим диапазон A 12: H 12, введем формулу =A7:H7 и удерживая нажатыми клавиши Ctrl и Shift, нажимаем Enter (Ctrl + Shift + Enter).

В ячейку B 13 вводим формулу =B8/$B8; выделим B 13 и протянем маркер заполнения до H 13.

Затем в ячейку B 14 вводим формулу =B9-B$13*$B9; выделим B 14 и протянем мышью маркер заполнения до H 14.

Выделим диапазон B 14: H 14 и протянем маркер заполнения до H 15.

В ячейках A 12: H 15 появятся следующие значения:

 

1,0000 1,2500 0,5000 0,2500 0,2500 0,0000    
0,0000 1,0000 -2,0000 1,0000 -0,6000 0,8000 0,0000 0,0000
  0,0000 4,0000 3,0000 0,2000 -0,6000 1,0000 0,0000
  0,0000 14,0000 1,0000 3,6000 -4,8000 0,0000 1,0000

 

3. Перепишем значения строк A 12: H 15 в строки A 17: H 18, для этого выделим диапазон A 12: H 15, введем формулу =A12:H13 и удерживая клавиши Ctrl и Shift нажатыми, нажимаем Enter.

В ячейку C 19 вводим формулу =C14/$C14; выделим C 19 и протянем мышью за правый нижний угол до H 19.

В ячейку C 20 вводим формулу =C15-C$19*$C15, выделим C 20 и протянем маркер заполнения до H 20. В ячейках A 17: H 20 получим значения:

 

1,0000 1,2500 0,5000 0,2500 0,2500 0,0000    
0,0000 1,0000 -2,0000 1,0000 -0,6000 0,8000    
    1,0000 0,7500 0,0500 -0,1500 0,2500 0,0000
    0,0000 -9,5000 2,9000 -2,7000 -3,5000 1,0000

 

4. Осталось разделить последнюю строку на ведущий элемент. Сформируем в диапазоне A 22: H 25 матрицы, которые получаются после применения прямого хода метода Гаусса.

Выделим диапазон A 22: H 24 и введем формулу =A17:H19 и, удерживая нажатыми клавиши Ctrl и Shift, нажимаем Enter. В ячейку D 25 вводим формулу =D20/$D20, выделим D 25 и протянем мышью за правый нижний угол до H 25. В диапазоне A 22: H 25 получим:

 

1,0000 1,2500 0,5000 0,2500 0,2500 0,0000    
0,0000 1,0000 -2,0000 1,0000 -0,6000 0,8000    
0,0000 0,0000 1,0000 0,7500 0,0500 -0,1500 0,25  
      1,0000 -0,3053 0,2842 0,3684 -0,1053

 

Далее применим обратный ход метода Гаусса.

5. Выделим A 30: H 30, введем =A25:H25 и нажмем комбинацию клавиш Ctrl + Shift + Enter. В ячейку D 29 введем =D24-D$25*$D24, выделим D 29 и протянем маркер заполнения вправо до H 29. А затем снова выделим D 29 и протянем маркер заполнения влево до A 29. Теперь выделим всю строку A 29: H 29 и протянем вверх до строки 27.

6. Выделим A 34: H 35, введем =A29:H30 и нажмем комбинацию клавиш Ctrl + Shift + Enter. В ячейку C 33 введем =C28-C$34*$C28, выделим C 33 и протянем маркер заполнения вправо до H 33. А затем снова выделим C 33 и протянем маркер заполнения влево до A 33. Теперь выделим всю строку A 33: H 33 и протянем маркером заполнения на одну строку вверх до строки 32.

7. Выделим A 38: H 40, введем формулу =A33:H35 и нажмем комбинацию клавиш Ctrl + Shift + Enter. В ячейку B 37 введем формулу =B32-B$38*$B32, выделим B 37 и протянем маркер заполнения вправо до H 37. Затем снова выделим B 37 и протянем маркер заполнения влево в ячейку A 37.

В диапазоне A 37: D 40 получена единичная матрица, а в диапазоне E 37: H 40 — обратная:

 

  A B C D E F G H
          -0,14211 0,373684 0,447368 -0,34211
          0,263158 -0,21053 -0,42105 0,263158
          0,278947 -0,36316 -0,02632 0,078947
          -0,30526 0,284211 0,368421 -0,10526

 

Для проверки полученного результата выделим диапазон A 43: D 46, введем формулу =МУМНОЖ(A2:D5;E37:H40) и нажмем комбинацию клавиш Ctrl + Shift + Enter. Получим единичную матрицу.

Приведем программу на языке C ++ для вычисления определителя матрицы методом Гаусса с выбором главного элемента.

 

#include <except.h>

#include <iostream.h>

long double detA(long double **a, const int n);

int main(){

long double **a; long double dA; int i,j,n;

cout <<" input n = "; cin >> n;

try {

a= new long double*[n]; for(i=0;i<n;i++) a[i]=new long double[n];

}

catch (xalloc){cout <<"\nCould not allocate\n"; exit(-1);}

cout <<"\n input matrix a \n";

for (i=0; i<n; i++)for (j=0; j<n; j++)cin >> a[i][j];

dA = detA(a, n);

cout << "\n matrix a: ";

for (i=0; i<n; i++){cout << "\n"; for (j=0; j<n; j++) cout <<" "<< a[i][j];}

cout << "\n determinant A = "; cout << dA;

cout << "\n Press Key and Enter to continue";

cin >> i; // for pause

for(i=0;i<n;i++)delete[] a[i];

delete a;

return 0;

}//end main

long double detA(long double **a, const int n){

long double **aa;

int i, k, m, im; long double amm, aim, r,d;

try {aa= new long double*[n];

for(i=0;i<n;i++) aa[i]=new long double[n]; }

catch (xalloc){cout <<"\nCould not allocate\n"; exit(-1);}

for (i = 0; i <= n-1; i++)

for (k = 0; k <= n-1; k++) aa[i][k] = a[i][k];

d = 1;

for (m = 0; m <= n-2; m++) {// m

amm = aa[m][m]; im = m;

for (i = m; i <= n-1; i++)

if(aa[i][m] > amm){amm = aa[i][m]; im = i; } d = d*amm;

if(im!= m)d = - d;

cout <<"\n amm = "<<amm;

if(im!= m)for (k = m; k <= n-1; k++)

{r = aa[im][k]; aa[im][k] = aa[m][k]; aa[m][k] = r;}

for (k = m; k <= n-1; k++)aa[m][k] = aa[m][k]/amm; // 3.16

for (i = m + 1; i <= n-1; i++){// i

aim = aa[i][m];

for (k = m; k <= n-1; k++)

aa[i][k] = aa[i][k] - aa[m][k]*aim; // 3.17

}// end i

}// end m

d = d* aa[n-1][n-1]; cout <<"\n amm = "<< aa[n-1][n-1];

for(i=0;i<n;i++)delete[] aa[i];

delete aa;

return d;

}// end detA

 

Отметим, что в данной программе исходная матрица a [][]сохраняется, так как для преобразований в подпрограмме-функции detA() используется дополнительный массив aa [][]. Все используемые массивы динамические, их размерность задается во время выполнения программы.

Приведем результат расчета определителя по этой программе:

 

input n = 4

input matrix a

4 5 2 1 3 5 -1 2 1 2 3 4 0 6 2 7 [столбец чисел ]

amm = 4

amm = 6

amm = 2.25

amm = 3.51852

matrix a:

4 5 2 1

3 5 -1 2

1 2 3 4

0 6 2 7

Determinant A = –190

Press key and Enter to continue

 

Приведем теперь программу вычисления обратной матрицы методом Гаусса с выбором главного элемента:

 

#include <except.h>

#include <iostream.h>

int Matr_inv(long double **a, long double **a1, const int n);

int main(){

long double **a; long double **ainv; int i,j,n;

cout <<" input n = "; cin >> n;

try {

ainv= new long double*[n]; for(i=0;i<n;i++) ainv[i]=new long double[n];

}

catch (xalloc){cout <<"\nCould not allocate\n"; exit(-1);}

try {

a= new long double*[n]; for(i=0;i<n;i++) a[i]=new long double[n];

}

catch (xalloc){cout <<"\nCould not allocate\n"; exit(-1);}

cout <<"\n input matrix a \n";

for (i=0; i<n; i++)for (j=0; j<n; j++)cin >> a[i][j];

cout << "\n matrix a: ";

for (i=0; i<n; i++){cout << "\n";

for (j=0; j<n; j++) cout <<" "<< a[i][j];}

Matr_inv(a, ainv, n);

cout << "\n ------------------- matr a: ";

for (i=0; i<n; i++){cout << "\n";

for (j=0; j<n; j++) cout <<" "<< a[i][j];}

cout << "\n -------------------- inv matr ainv: ";

for (i=0; i<n; i++){cout << "\n";

for (j=0; j<n; j++) cout <<" "<< ainv[i][j];}

cout << "\n Press Key and Enter to continue";

cin >> i; // for pause

for(i=0;i<n;i++)delete[] a[i];

delete a;

for(i=0;i<n;i++)delete[] ainv[i];

delete ainv;

return 0;

}//end main

int Matr_inv(long double **a, long double **a1, const int n){

int i, k, m, im; long double amm, aim, r;

for (i = 0; i <= n-1; i++)

for (k = 0; k <= n-1; k++){

if(i==k)a1[i][k] = 1; else a1[i][k] = 0;}

// 1.

for (m = 0; m <= n-2; m++) {// m

amm = a[m][m]; im = m;

for (i = m; i <= n-1; i++)

if(a[i][m] > amm){amm = a[i][m]; im = i; }

if(im!= m){

for (k = m; k <= n-1; k++){

r = a[im][k]; a[im][k] = a[m][k]; a[m][k] = r;}

for (k = 0; k <= n-1; k++){

r = a1[im][k]; a1[im][k] = a1[m][k]; a1[m][k] = r;}

}

for (k = m; k <= n-1; k++)a[m][k] = a[m][k]/amm;

for (k = 0; k <= n-1; k++) a1[m][k] = a1[m][k]/amm;

for (i = m + 1; i <= n-1; i++){// i

aim = a[i][m];

for (k = m; k <= n-1; k++)a[i][k] = a[i][k] - a[m][k]*aim;

for (k = 0; k <= n-1; k++)a1[i][k] = a1[i][k] - a1[m][k]*aim;

}// end i

}// end m

// 2.

amm = a[n-1][n-1]; a[n-1][n-1] = 1;

for (k = 0; k <= n-1; k++) a1[n-1][k] = a1[n-1][k]/amm;

for (m = n-1; m >= 0; m--){

for (i = m-1; i >= 0; i--){// i

aim = a[i][m]; a[i][m] = 0;

for (k = 0; k <= n-1; k++)a1[i][k] = a1[i][k] - a1[m][k]*aim;

}// end i

}// end m

return 0;

}// end Matr_inv

 

Подпрограмма Matr_inv(a, a1, n) не сохраняет исходную матрицу. В результате выполнения программы в массиве a формируется единичная матрица, а в массиве a 1 — обратная матрица. Приведем результат выполнения программы для примера 3.8:

 

input n = 4

input matrix a

4 5 2 1 3 5 -1 2 1 2 3 4 0 6 2 7 [столбец чисел ]

matrix a

4 5 2 1

3 5 -1 2

1 2 3 4

0 6 2 7

---------------------------- matr a

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

---------------------------- inv matr ainv

-0,142105 0,373684 0,447368 -0,342105

0,263158 -0,210526 -0,421053 0,263158

0,278947 -0,363158 -0,0263158 0,0789474

-0,305263 0,284211 0,368421 -0,105263

Press Key and Enter to continue

 

Как видим, результат совпадает с обратной матрицей, найденной в программе Excel обычным методом Гаусса.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.025 сек.)