АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение систем n линейных уравнений с n неизвестными матричным методом и по формулам Крамера

Читайте также:
  1. A) к любой экономической системе
  2. A) прогрессивная система налогообложения.
  3. C) Систематическими
  4. CASE-технология создания информационных систем
  5. ERP и CRM система OpenERP
  6. HMI/SCADA – создание графического интерфейса в SCADА-системе Trace Mode 6 (часть 1).
  7. I Понятие об информационных системах
  8. I СИСТЕМА, ИСТОЧНИКИ, ИСТОРИЧЕСКАЯ ТРАДИЦИЯ РИМСКОГО ПРАВА
  9. I. Основні риси політичної системи України
  10. I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ
  11. I. Решение логических задач средствами алгебры логики
  12. I. Составление дифференциальных уравнений и определение передаточных функций

I. Решение систем матричным методом (с помощью обратной матрицы)

Решение систем n линейных уравнений с n неизвестными матричным методом рассмотрим на примере системы трех линейных уравнений 1-ой степени с тремя неизвестными.

(1)

Обозначим: – матрица системы,

–матрица-столбец свободных членов
– матрица-столбец неизвестных, -

Найдем .

Тогда систему (1) можно записать используя свойство равенства матриц:

(2) – матричная запись системы линейных уравнений.

Найдем решение этого матричного уравнения. Пусть Аневырожденнаяматрица, т.е. , значит . Умножим обе части (2) на

.

Поскольку , то .

EX= X, значит

(3)

решение (2) и системы (1).

 

Пример 7.1 Решить систему уравнений матричным методом.

Решение:

– матричная запись системы.

– решение системы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)