|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Пояснительная записка. Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования
Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования. Данная рабочая программа ориентирована на учащихся 9 класса и реализуется на основе следующих документов: 1. Программа для общеобразовательных школ, гимназий, лицеев: Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 2010; 4-е изд. – 2010г 2. Стандарт основного общего образования по математике. Стандарт основного общего образования по математике //Математика в школе. – 2010г,-№4. 3. Сборник нормативных документов. Математика / Сост. Э. Д. Днепров, А. Г. Аркадьев. – М.: Дрофа, 2010. 4. Примерная программа основного общего оьразования по математике на базовом уровне. 5. Методическое письмо под редакцией И.В. Ященко, А.В. Семенова "О преподавании математики в 2011/2012 учебном году". Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Рабочая программа выполняет две основные функции: Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета. Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся. Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса. Цели изучения: § овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; § интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей; § формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов; § воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса; § развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе. Общее содержание предмета. Рабочая программа составлена на основе Федерального компонента государственного стандарта основного общего образования и Примерной программы основного общего образования, предназначена для изучения алгебры в 9 классах. Согласно Федеральному базисному учебному плану данная рабочая программа предусматривает организацию процесса обучения в объеме 102 часов (3 часа в неделю). Преподавание ведется с использованием УМК А. Г. Мордковича. Целью изучения курса алгебры в 9 классе является развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, информатика и другие), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществления функциональной подготовки школьников. В программе приводится распределение учебного времени между наиболее крупными разделами. Содержание представлено в виде нескольких блоков, объединяющих логически связанные между собой вопросы. Приоритетной содержательно-методической линией программы является функционально-графическая. Опираясь на опыт изучения функций, их свойств и графиков в 7-8 классах на наглядно-интуитивном и рабочем уровнях, в 9 классе осуществляется переход на уровень теоретического осмысления. С учетом возрастных особенностей класса выстроена система учебных занятий, спроектированы цели, задачи, сформулированы ожидаемые результаты обучения, продуманы возможные формы контроля: фронтальный опрос, индивидуальная работа у доски, индивидуальная работа по карточкам, дифференцированная самостоятельная работа, дифференцированная проверочная работа, тренировочная практическая работа, исследовательская практическая работа, лабораторно-практическая работа, математический диктант, диагностическая тестовая работа, тестовая работа, игровые контролирующие задания, управляемая самостоятельная работа, контрольная работа. Для отработки вычислительных навыков и универсальных учебных умений на каждом третьем уроке проводится устная разминка с применением презентаций в среде Power Point. В содержании рабочей программы предполагается реализовать компетентностный, личностно ориентированный, деятельный подходы, которые определяют задачи обучения: · приобретения математических знаний и умений; · овладение обобщенными способами мыслительной, творческой деятельностей; · освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора. В основу содержания и структурирования данной программы, выбора приемов, методов и форм обучения положено формирование универсальных учебных действий, которые создают возможность самостоятельного успешного усвоения обучающимися новых знаний, умений и компетентностей, включая организацию усвоения, т.е. умения учиться. В процессе обучения алгебре осуществляется развитие личностных, регулятивных, познавательных и коммуникативных действий. Учащиеся продолжают овладение разнообразными способами познавательной, информационно-коммуникативной, рефлексивной деятельности, приобретают и совершенствуют опыт:
Личностные, метапредметные и предметные результаты освоения конкретного учебного курса.
Оценка метапредметных результатов предполагает оценку универсальных учебных действий учащихся (регулятивных, коммуникативных, познавательных), т. е. таких умственных действий обучающихся, которые направлены на анализ своей познавательной деятельности и управление ею. К ним относятся: · способность обучающегося принимать и сохранять учебную цель и задачи; · самостоятельно преобразовывать практическую задачу в познавательную; · умение планировать собственную деятельность в соответствии с поставленной задачей и условиями её реализации и искать средства её осуществления; · умение контролировать и оценивать свои действия, вносить коррективы в их выполнение на основе оценки и учёта характера ошибок, проявлять инициативу и самостоятельность в обучении; · умение осуществлять информационный поиск, сбор и выделение существенной информации из различных информационных источников; · умение использовать знаково-символические средства для создания моделей изучаемых объектов и процессов, схем решения учебно-познавательных и практических задач; · способность к осуществлению логических операций сравнения, анализа, обобщения, классификации по родовидовым признакам, установлению аналогий, отнесению к известным понятиям; · умение сотрудничать с педагогом и сверстниками при решении учебных проблем, принимать на себя ответственность за результаты своих действий. Оценка метапредметных результатов проводится в ходе различных процедур таких, как решение задач творческого и поискового характера, учебное проектирование, итоговые проверочные работы, комплексные работы на межпредметной основе, мониторинг форсированности основных учебных умений. Объектом оценки предметных результатов является способность учащихся решать учебно-познавательные и учебно-практические задачи. Оценка достижения предметных результатов ведётся как в ходе текущего и промежуточного оценивания, так и в ходе выполнения итоговых проверочных работ. Результаты накопленной оценки, полученной в ходе текущего и промежуточного оценивания, фиксируются и учитываются при определении итоговой оценки. В учебном процессе оценка предметных результатов проводится с помощью диагностических работ (промежуточных и итоговых), направленных на определение уровня освоения темы учащимися. Объектом оценки личностных результатов являются сформированные у учащихся универсальные учебные действия, включаемые в три основных блока: · самоопределение - сформированность внутренней позиции обучающегося - принятие и освоение новой социальной роли обучающегося; становление основ российской гражданской идентичности личности как чувства гордости за свою Родину, народ, историю и осознание своей этнической принадлежности; развитие самоуважения и способности адекватно оценивать себя и свои достижения, видеть сильные и слабые стороны своей личности; · смыслообразование - поиск и установление личностного смысла (т.е. «значения для себя») учения обучающимися на основе устойчивой системы учебно-познавательных и социальных мотивов; понимания границ того, «что я знаю», и того, «что я не знаю», «незнания» и стремления к преодолению этого разрыва; · морально-этическая ориентация - знание основных моральных норм и ориентация на их выполнение на основе понимания их социальной необходимости; способность к моральной децентрации - учёту позиций, мотивов и интересов участников моральной дилеммы при её разрешении; развитие этических чувств - стыда, вины, совести как регуляторов морального поведения.
Содержание учебной темы. 1) Рациональные неравенства и их системы (3 часов). Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств. Основная цель: · формирование представлений о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств; · овладение умением совершать равносильные преобразования, решать неравенства методом интервалов; · расширение и обобщение сведений о рациональных неравенствах и способах их решения: метод интервалов, метод замены переменной. 2) Системы уравнений (4 часов). Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений. Основная цель: · формирование представлений о системе двух рациональных уравнений с двумя переменными, о рациональном уравнении с двумя переменными; · овладение умением совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными; · отработка навыков решения уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных. 3) Числовые функции (5 часов). Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции, непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем. Основная цель: · формирование представлений о таких фундаментальных понятиях математики, какими являются понятия функции, её области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном; · овладение умением применения четности или нечетности, ограниченности, непрерывности, монотонности функций; · формирование умений находить наибольшее и наименьшее значение на заданном промежутке, решая практические задачи; · формирование понимания того, как свойства функций отражаются на поведении графиков функций. 4) Прогрессии (5 часов). Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии. Основная цель: · формирование преставлений о понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; о трех способах задания последовательности: аналитическом, словесном и рекуррентном; · сформировать и обосновать ряд свойств арифметической и геометрической прогрессий, свести их в одну таблицу; · овладение умением решать текстовые задачи, используя свойства арифметической и геометрической прогрессии.
5) Элементы комбинаторики, статистики и теории вероятностей (2 часов). Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности. Основная цель: · формирование преставлений о всевозможных комбинациях, о методах статистической обработки результатов измерений, полученных при проведении эксперимента, о числовых характеристиках информации; · овладеть умением решения простейших комбинаторных и вероятностных задач.
Количество учебных часов: В год –19 часа (1,5 часа в неделю, всего 19 часов) В том числе: Контрольных работ – 5
Учебно-тематический план
Календарно-тематический план.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.) |