АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Пример выполнения типового расчета
Условие типового расчета. Часть 1. Условие содержит матрицу оператора A: . Часть 2. Задано уравнение кривой второго порядка: 3 x 2 + 2 xy + 3 y 2 – 6 x – 2 y = –4.
Выполнение типового расчета. Часть 1. Найдем собственные значения и собственные векторы симметрической матрицы: Составим характеристическое уравнение (9.4) | A – λE | = = 0 Раскрыв определитель и приведя подобные члены, получим уравнение третьей степени:
λ 3 – 10 λ 2 – 13 λ + 22 = 0
| (9.16)
| В алгебре имеется теорема, утверждающая, что в приведенном уравнении произвольной степени, т.е. таком, в котором коэффициент при неизвестном в старшей степени равен единице, корни являются делителями свободного члена. Варианты настоящей работы составлены так, что собственные значения – числа целые, а, следовательно, они являются делителями числа 22. Выписав эти делители ±1, ±2, ±11, ±22 – и подставляя их поочередно в уравнение (9.16) (для простоты расчетов начиная с меньших по абсолютной величине), найдем один из корней уравнения. В нашем случае λ = 1 – корень уравнения. Многочлен, стоящий в левой части уравнения (9.16) может быть разложен на множители: λ 3 – 10 λ 2 – 13 λ + 22 = (λ – 1)(λ 2 + pλ + q) Неизвестные коэффициенты p и q квадратного трехчлена могут быть найдены, например, делением многочлена третьей степени на двучлен (λ – 1). Деление многочлена на многочлен осуществляется по правилам, аналогичным правилам деления многозначного числа на многозначное. Роль цифр высшего и низшего разрядов играют члены, содержащие переменную в высшей и низшей степенях. Перед делением члены делимого и делителя располагаются в порядке убывания степеней переменной: Опишем процесс деления подробно. 1. Делим первый член делимого λ 3 на первый член делителя λ, результат λ 2 есть первый член частного. 2. Умножаем полученный член на делитель λ – 1, результат λ 3 – λ 2 подписываем под делимым. 3. Вычитаем члены результата из соответствующих членов делимого; сносим остальные члены делимого, получаем – 9 λ 2 – 13 λ + 22. 4. Первый член остатка – 9 λ 2 делим на первый член делителя, результат – 9 λ есть второй член частного. 5. Умножаем полученный второй член частного на делитель, результат – 9 λ 2 + 9 λ подписываем под первым остатком. 6. Вычитаем члены этого результата из соответствующих членов первого остатка; сносим оставшийся член первого остатка; получаем второй остаток – 22 λ + 22. 7. Первый член второго остатка – 22 λ делим на первый член делимого; результат -22 есть третий член частного. 8. Умножаем, полученный третий член частного на делитель, результат – 22 λ + 22 подписываем под вторым остатком. 9. Вычитаем члены этого результата из второго остатка, получаем нуль. Деление закончено. Таким образом, разложив на множители левую часть уравнения (9.16), получили (λ – 1)(λ 2 – 9 λ – 22) = 0. Отсюда находим собственные значения линейного оператора λ 1 = 1, λ 2 = – 2, λ 3 = 11. Для нахождения соответствующих им собственных векторов необходимо решить однородные системы (9.5). При λ = 1 Записываем расширенную матрицу системы и ищем решение по методу Гаусса: . Ранг матрицы коэффициентов равен 2, следовательно имеем одно свободное неизвестное, в качестве которого примем x 3. Тогда решение запишется: или . При . Так как собственный вектор определяется с точностью до числового множителя, свободное неизвестное принимаем таким, чтобы координаты вектора были взаимно простыми целыми числами. Аналогично находим собственный вектор , соответствующий собственному значению λ 2 = –2: => . Отсюда x 3 = 0. Следовательно, в качестве свободного неизвестного здесь нельзя брать x 3, так как оно фиксировано. Выбираем в качестве свободного неизвестного x 2, тогда решение запишется: или . При x 2 = 1: .
Контроль расчетов: Убедимся в ортогональности собственных векторов X 1 и X 2: = 1 · (–1) + (–1) · 1 + 2 · 1 = 0. Аналогично убеждаемся: = 0; = 0. Система собственных векторов ортогональна. Составим матрицу перехода T, столбцами которой являются найденные собственные векторы. Для окончательной проверки расчетов умножим матрицу A на T:
| (9.17)
| Каждый столбец полученной матрицы есть произведение матрицы A на соответствующий собственный вектор. Согласно определению собственного вектора это произведение должно быть равно произведению собственного числа на собственный вектор: ; ; . Контроль подтвердил правильность расчетов. Составленная матрица T является матрицей перехода к базису из собственных векторов. Матрица линейного оператора в базисе из собственных, векторов ищется по формуле (9.6). Найдем сначала матрицу T –1, являющуюся обратной матрицей T. . Контроль расчетов при нахождении обратной матрицы рекомендуем провести, перемножив матрицы T и T –1, так как, согласно определению, T · T –1 = E – единичная матрица. Для нахождения A умножим T на матрицу A · T, найденную при контроле расчетов (9.17): . Результат расчетов согласуется с формулой (9.8). Часть 2. Проведем исследование уравнения кривой второго порядка:
3 x 2 + 2 xy + 3 y 2 – 6 x – 2 y = –4
| (9.18)
| Для приведения уравнения к каноническому виду необходимо перейти к базису из нормированных собственных векторов ē 1, ē 2 матрицы квадратной формы (9.11): . Находим собственные значения матрицы A, как корни характеристического уравнения (9.12): | A – λE | = = 0. Раскрывая определитель и приводя подобные члены, приходим к уравнению λ 2 – 6 λ + 8 = 0, корни которого λ 1= 4, λ 2 = 2. Координаты собственных векторов находятся из решения однородных уравнений (9.13). При λ 1 = 4 . Откуда c 11 = c 21, c 21 є R. Полагая c 21 = 1, получим . Аналогично находим второй собственный вектор: λ 2 = 2 . Откуда c 12 = – c 22, c 22 є R. Полагая c 22 = 1, получим . Убеждаемся, что найденные собственные векторы ортогональны между собой. Изобразим векторы и на плоскости в базисе векторов , (рис. 9.2).
Рис. 9.2 Собственные векторы в системе координат x, y
Поворот от вектора к вектору совершается против часовой стрелки. Тем самым мы убеждаемся, что нумерация собственных векторов выбрана правильно, т.е. первый вектор , второй – . В противном случае, т.е. если бы указанный поворот совершался по часовой стрелке, нумерацию собственных векторов следовало бы поменять. Для контроля расчетов составим матрицу T, столбцами которой являются найденные собственные векторы, и перемножим матрицы A и T: . Убеждаемся, , что подтверждает правильность расчетов. Пронормируем найденные собственные векторы: ē 1 = , ē 2 = . Получили новый базис (ē 1, ē 2), получающийся поворотом старого на угол π / 4 против часовой стрелки. Старые координаты x, y в базисе , и новые x′, y′ в базисе ē 1, ē 2 связаны соотношениями (9.14):
или
| (9.19)
| Подставим (9.19) в уравнение кривой (6.10): . Раскрыв скобки и приведя подобные члены, получим: 4 x′ 2 + 2 y′ 2 – 8 x′ + 4 y′ + 4 = 0, что согласуется с формулой (9.15): коэффициентами при x′ 2 и y′ 2 стоят собственные числа 4 и 2. Сокращая на 2 и выделяя полные квадраты, получим 2(x′ – 1)2 + (y′ + 1)2 = 1 или . Следовательно, уравнение (9.18) является уравнением эллипса с полуосями и 1 и центром в точке (1,–1) новой системы координат. Чтобы изобразить полученную кривую в исходной системе координат, удобно рассчитать координаты характерных точек кривой в этой системе координат. Для этого рисуем кривую в новой системе координат X′O′Y′ (рис. 9.3).
Рис. 9.3 Полученная кривая в системе координат x′, y′
Выписываем координаты характерных точек в системе X′O′Y′. В нашем случае это центр кривой Q и вершины эллипса ABCD. По формуле (9.19) находим координаты этих точек в исходной системе:
Точка
| Координаты (x′, y′) в системе X′ O′ Y′
| Координаты (x, y) в системе X O Y
| Q
| (1; –1)
| (; 0)
| A
| (1 + 1/ ; –1)
| ( + 1/2; 1/2)
| B
| (1 –1/ ; –1)
| ( –1/2; –1/2)
| C
| (1; 0)
| (1/ ; –1/ )
| D
| (1; –2)
| (3/ ; –1/ )
| Наносим рассматриваемые точки в старой системе координат XOY после чего несложно нарисовать изучаемую кривую в этой системе координат (рис. 9.4).
Рис. 9.4 Полученная кривая в исходной системе координат x, y
Замечание. Если заданная в условии задачи кривая оказывается гиперболой, необходимо изобразить ее асимптоты. Для этого уравнение асимптот записывают в новой системе координат x′, y′, затем из формул (9.19) выражают новые координаты x′, y′ через старые x, y и делают замену в уравнениях асимптот, записывая их тем самым в старой системе координат. После этого несложно нарисовать асимптоты на чертеже.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Поиск по сайту:
|