|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Алгоритм расчета дисперсионных характеристик плоского трехслойного оптического волноводаРассмотрим алгоритм расчета дисперсионных характеристик плоского трехслойного оптического волновода на примере TE-мод. На первом этапе при выбранных параметрах и путем численного решения уравнения (21) определяются нормированные частоты отсечек . Для решения уравнения (21) может использоваться любой итерационный метод нахождения корней (метод бисекции, метод хорд, метод секущих и т.д.). Уравнение (21) имеет бесконечное число корней , каждый из которых определяет частоту отсечки TE-моды с индексом (порядковый номер корня). Самый минимальный по значению корень соответствует частоте отсечки нулевой (основной) TE-моды. На втором этапе при различных значениях нормированной частоты численно решается уравнение (19) и определяются его корни . Расчет необходимо начинать с нормированной частоты , равной частоте отсечки нулевой моды , которая была рассчитана на первом этапе. Очевидно, что при уравнение (19) будет иметь один корень, соответствующий нормированной постоянной распространения нулевой TE-моды. При уравнение (19) будет иметь уже два корня, больший по значению из которых соответствует нулевой моде, а меньший — первой. При уравнение (19) будет иметь три корня и т.д. Таким образом, для каждой частоты путем численного решения уравнения (19) определяется набор корней , каждый из которых соответствует собственной волне (N — общее число корней на частоте). В результате строится график функции , которая имеет несколько ветвей, соответствующих различным собственным волнам. Примерный вид дисперсионной характеристики представлен на рис.2. По оси абсцисс отложены значения нормированной частоты , а по оси ординат — соответствующие им значения нормированной постоянной распространения . Кружками отмечены частоты отсечек собственных волн.
Рисунок 2. Типичный вид дисперсионной характеристики
Для построения дисперсионных характеристик TM-мод необходимо численно решать уравнение (22), предварительно перейдя в нем к нормированным переменным. Частоты отсечек TM-мод определяются путем решения уравнения (23). Алгоритм расчета дисперсионных характеристик TM-мод плоского трехслойного оптического волновода аналогичен рассмотренному выше случаю TE-мод. Ниже рассматриваются возможности программы MathCad для расчета дисперсионных характеристик плоских оптических волноводов в автоматическом режиме. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |