АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Упражнение 2. Метод хорд

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. I. Методические основы
  3. I. Предмет и метод теоретической экономики
  4. II. Метод упреждающего вписывания
  5. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  6. II. Методы непрямого остеосинтеза.
  7. II. Проблема источника и метода познания.
  8. II. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ
  9. III. Методологические основы истории
  10. III. Предмет, метод и функции философии.
  11. III. Социологический метод
  12. III. УЧЕБНО – МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО КУРСУ «ИСТОРИЯ ЗАРУБЕЖНОЙ ЛИТЕРАТУРЫ К. XIX – НАЧ. XX В.»

Пусть задано уравнение вида , которое на некотором интервале имеет корень , при котором .

Пусть график этой функции имеет вид, показанный на рисунке 2.

 

Рисунок 2

Если , это означает, что на интервале имеется корень . Метод хорд заключается в следующем. Проводим хорду из точки в точку и в качестве первого приближения выбираем точку :

Если , то корень лежит в интервале , в противном случае в . Для функции, показанной на рисунке 2 выполняется первое условие, поэтому проводим хорду из точки в точку и в качестве первого приближения выбираем точку :

Если , то корень лежит в интервале , в противном случае в . Для функции, показанной на рисунке 2 выполняется второе условие, поэтому проводим хорду из точки в точку и в качестве первого приближения выбираем точку :

Подобный процесс выполняется до тех пор, пока где -ое приближение к корню; — наперед заданное малое число.

Общая формула выбора приближения для метода хорд имеет вид:

Алгоритм метода хорд в среде MathCad выглядит следующим образом:

При помощи функции Chord (a,b, ) найдите корень заданной функции с точностью 10–6:

Концы интервала смены знака и должны быть заданы в начале программы.

Измените функции Bisection (a,b, ) и Chord (a,b, ) таким образом, чтобы они могли подсчитать число итераций необходимых для поиска корня с заданной точностью (для этого создайте целочисленный параметр в начале функций, который затем при каждой итерации увеличивается на единицу).

Сделайте вывод о том, какой из двух методов является более быстродействующим.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)