Задача 2. Клиент заключает с банком договор о выплате ему в течение 5 лет ежегодной ренты в размере 5 тыс
Постановка задачи.
Клиент заключает с банком договор о выплате ему в течение 5 лет ежегодной ренты в размере 5 тыс. руб. в конце каждого года. Какую сумму необходимо внести клиенту в начале первого года, чтобы обеспечить эту ренту, исходя из годовой процентной ставки 20%?
Алгоритм решения задачи.
Для расчета настоящего объема предполагаемой инвестиции на основе постоянных периодических выплат в размере 5 тыс. руб. в течение 5 лет используется функция ПС. Подставив исходные данные в заданную функцию, получим:
= ПС(20%; 5; 5000; 0; 0) = -14 953,06 руб.
Знак «минус» означает, что клиент должен вложить 14953,06 руб., чтобы потом получить выплаты.
Расчет текущей стоимости серии будущих постоянных периодических выплат, производимых в конце периода (обычные платежи) и дисконтированных нормой дохода ставка, ведется по формуле:
(4.7),
где: Пс – текущая стоимость серии фиксированных периодических платежей;
Плт – фиксированная периодическая сумма платежа;
Кпер – общее число периодов выплат (поступлений);
Ставка – постоянная процентная ставка.
Вычисления по формуле (4.7) дают то же значение (без учета знака):
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | Поиск по сайту:
|