|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задача 1. Рассчитать, через сколько лет вклад размером 100 000 рубПостановка задачи. Рассчитать, через сколько лет вклад размером 100 000 руб. достигнет 1 000 000 руб., если годовая процентная ставка по вкладу 13,5% годовых и начисление процентов производится ежеквартально. Алгоритм решения задачи. При квартальном начислении процентов ставка процента за период начисления равна 13%/4. Чтобы определить общее число периодов выплат для единой суммы вклада, воспользуемся функцией КПЕР со следующими аргументами: ставка = 13%/4; пс = -1; бс = 10. Нули в текущей и будущей суммах можно не набирать, достаточно сохранить между ними пропорции. Значением функции КПЕР является число периодов, необходимое для проведения операции, в данном случае - число кварталов. Для нахождения числа лет полученный результат разделим на 4: = КПЕР (13%/4;;-1;10) / 4 = 18 Иллюстрация решения задачи приведена на рис. 4.11. Для решения задачи можно также воспользоваться формулой (4.1), в которой аргумент Кпер и есть значение функции КПЕР. Выполнив преобразования и прологарифмировав обе части уравнения (4.1), получим: (4.12) Подставив в (4.12) значения, убедимся в совпадении результатов: Рис. 4.11. Иллюстрация применения функции КПЕР и аналитической формулы для вычисления числа периодов Задача 2. Постановка задачи. Для покрытия будущих расходов фирма создает фонд. Средства в фонд поступают в виде постоянной годовой ренты постнумерандо. Сумма разового платежа 16 000 руб. На поступившие взносы начисляются 11,2% годовых. Необходимо определить, когда величина фонда будет равна 100 000 руб. Алгоритм решения задачи. Для определения общего числа периодов, через которое будет достигнута нужная сумма, воспользуемся функцией КПЕР с аргументами: ставка = 11,2%; плт = -16; бс = 100. В результате вычислений получим, что через 5 лет величина фонда достигнет отметки 100 000 руб.: = КПЕР (11,2%;-16;;100) = 5 Решение задачи может быть найдено и иным способом – с помощью функций БС (либо ПС) и последующего подбора параметра. Иллюстрация решения приведена на рис. 4.12.
Рис. 4.12. Применение функции БС и механизма подбора параметра для определения числа периодов Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |