АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема Куна-Таккера для общей задачи нелинейного программирования

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. 1.1. Пример разработки модели задачи технического контроля
  3. I. 1.2. Общая постановка задачи линейного программирования
  4. I. 2.1. Графический метод решения задачи ЛП
  5. I. 3.1. Двойственная задача линейного программирования
  6. I. 4.1. Первая теорема двойственности
  7. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  8. I. ЗАДАЧИ ПЕДАГОГИЧЕСКОЙ ПРАКТИКИ
  9. I. Значение и задачи учета. Основные документы от реализации продукции, работ, услуг.
  10. I. Ситуационные задачи и тестовые задания.
  11. I. Цель и задачи дисциплины
  12. I.5.3. Подготовка данных для задачи линейного программирования

Рассмотрим общую задачу нелинейного программирования

(1)

 

где – произвольная функция,

(2)

 

не пустое ограниченное замкнутое множество.

Нам понадобятся далее понятия множителей Лагранжа и функции Лагранжа для общей задачи нелинейного программирования. Функция Лагранжа для задачи (1) с ограничениями (2) определяется формулой

где , - - векторы множителей Лагранжа, соответственно.

Нам понадобится также понятие условий регулярности для общей задачи нелинейного программирования. Если точка и ограничения являются активными ограничениями, то условие линейной независимости векторов , а также условие линейной независимости векторов называются условиями регулярности ограничивающих функций в точке . Смысл условий регулярности раскрыт в предыдущих параграфах.

Теорема 1 (теорема Куна-Таккера). Пусть функции , , имеют непрерывные частные производные в некоторой окрестности точки и пусть эта точка является точкой локального минимума функции . Пусть, кроме того, выполняются условия регулярности ограничивающих функций , в точке . Тогда существуют такие множители Лагранжа , , не все из которых равные нулю одновременно, что для функции Лагранжа точка является стационарной точкой функции, т.е.

(3)

 

Теорема 1 означает, что в ее условиях вместо задачи условной оптимизации (1), (2) можно решать задачу безусловной оптимизации

Необходимым условием существования локального минимума этой задачи в некоторой точке является условие (см. Теорему 2.1).

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)