|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Корреляционный анализ
Корреляционный анализ есть метод установления связи и измерения ее тесноты между наблюдениями, которые можно считать случайными и выбранными из совокупности, распределенной по многомерному нормальному закону. Корреляционной связью называется такая статистическая связь, при которой различным значениям одной переменной соответствуют разные средние значения другой. Возникать корреляционная связь может несколькими путями. Важнейший из них - причинная зависимость вариации результативного признака от изменения факторного. Кроме того, такой вид связи может наблюдаться между двумя следствиями одной причины. Основной особенностью корреляционного анализа следует признать то, что он устанавливает лишь факт наличия связи и степень ее тесноты, не вскрывая ее причин. В статистике теснота связи может определяться с помощью различных коэффициентов (Фехнера, Пирсона, коэффициента ассоциации и т.д.), а в анализе хозяйственной деятельности чаще используется линейный коэффициент корреляции. Коэффициент корреляции между факторами x и у определяется следующим образом:
Таким же образом вычисляется коэффициент корреляции между факторами в двухфакторной регрессионной модели вида у = ах + b, a также при любой другой форме связи между двумя показателями. Значения коэффициента корреляции изменяются в интервале [-1; + 1]. Значение r = -1 свидетельствует о наличии жестко детерминированной обратно пропорциональной связи между факторами, r = +1 соответствует жестко детерминированной связи с прямо пропорциональной зависимостью факторов. Если линейной связи между факторами не наблюдается, r 0. Другие значения коэффициента корреляции свидетельствуют о наличии стохастической связи, причем чем ближе | r | к единице, тем связь теснее. При | r |<0,3 связь можно считать слабой; при 0,3 < | r | < 0,7 - связь средней тесноты; | r | > 0,7 - тесная. Существуют и более дробные градации (например, таблица Чэддока). Практическая реализация корреляционного анализа включает следующие этапы: а) постановка задачи и выбор признаков; б) сбор информации и ее первичная обработка (группировки, исключение аномальных наблюдений, проверка нормальности одномерного распределения); в) предварительная характеристика взаимосвязей (аналитические группировки, графики); г) устранение мультиколлинеарности (взаимозависимости факторов) и уточнение набора показателей путем расчета парных коэффициентов корреляции; д) исследование факторной зависимости и проверка ее значимости; е) оценка результатов анализа и подготовка рекомендаций по их практическому использованию.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |